欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.若定義在R上的函數(shù)f(x)=$\frac{x}{{x}^{2}+a}$的圖象的最高點為P(m,n).
(1)若m<1,n<1,求a的取值范圍;
(2)若對任意的x,y∈R,都有|f(x)-f(y)|<1,求實數(shù)m的取值范圍.

分析 (1)由題意可得a>0,從而可得$\left\{\begin{array}{l}{\sqrt{a}<1}\\{2\sqrt{a}>1}\end{array}\right.$,從而解得.
(2)易知函數(shù)f(x)=$\frac{x}{{x}^{2}+a}$是R上的奇函數(shù),從而可得0<2n<1,從而解得.

解答 解:(1)∵函數(shù)f(x)=$\frac{x}{{x}^{2}+a}$的定義域為R,
∴a>0,
f(x)=$\frac{x}{{x}^{2}+a}$=$\frac{1}{x+\frac{a}{x}}$,
故當x=$\sqrt{a}$時,f(x)有最大值;
故$\left\{\begin{array}{l}{\sqrt{a}<1}\\{2\sqrt{a}>1}\end{array}\right.$,
故$\frac{1}{4}$<a<1;
(2)易知函數(shù)f(x)=$\frac{x}{{x}^{2}+a}$是R上的奇函數(shù),
又∵對任意的x,y∈R,都有|f(x)-f(y)|<1,
∴0<2n<1,
∴0<$\frac{m}{{m}^{2}+{m}^{2}}$<$\frac{1}{2}$,
即0<$\frac{1}{2m}$<$\frac{1}{2}$,
故m>1.

點評 本題考查了反比例函數(shù)的應(yīng)用及函數(shù)的性質(zhì)的判斷與應(yīng)用,同時考查了函數(shù)的最值的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知等差數(shù)列5,4$\frac{2}{7}$,3$\frac{4}{7}$,…的前n項和為Sn,求使得Sn最大的序號n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{2{x}^{2}}{x+1}$,函數(shù)g(x)=asin($\frac{π}{6}$x)-2a+2(a>0),若存在x1∈[0,1],對任意x2∈[0,1]都有f(x1)=g(x2)成立,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{2}$,1]B.[$\frac{2}{3}$,1)C.[$\frac{2}{3}$,1]D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知(x+$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展開式中,前三項系數(shù)成等差數(shù)列,則展開式中的常數(shù)項是( 。
A.28B.70C.$\frac{7}{16}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}}$減區(qū)間為[0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知二次函數(shù)f(x)在y軸上的截距為3,且滿足f(x+2)-f(x)=4x+2.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在區(qū)間[-2,2]上,y=f(x)圖象恒在直線y=-3x+m上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求函數(shù)f(x)=$\frac{\frac{1}{co{s}^{2}x}-tanx}{\frac{1}{co{s}^{2}x}+tanx}$+3的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(log2x)=ax2-2x+1-a,a∈R.
(1)求f(x)的解析式;
(2)解關(guān)于x的方程f(x)=(a-1)•4x
(3)設(shè)h(x)=2-xf(x),a>1時,對任意x1,x2∈[-1,1]總有|h(x1)-h(x2)|≤$\frac{4a+1}{2}$成立求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)滿足:f($\frac{1}{x}$)=x+$\frac{1}{x}$,則f(x)為( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

同步練習冊答案