【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線
的參數(shù)方程為
(
為參數(shù)),點
是曲線
上的一動點,以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的方程為
.
(Ⅰ)求線段
的中點
的軌跡的極坐標方程;
(Ⅱ)求曲線
上的點到直線
的距離的最大值.
【答案】(1)
(2)
【解析】試題分析:(Ⅰ)設(shè)線段
的中點
的坐標為
,由中點坐標公式得
(
為參數(shù)),消去參數(shù)得
的軌跡的直角坐標方程為
,化為極坐標方程即可;
(Ⅱ)直線
的方程為
,得直線
的直角坐標方程為
,利用圓心到直線的距離
與
的大小判斷直線與圓的位置關(guān)系是相離,所以曲線
上的點到直線
的距離的最大值為
即得解.
試題解析:
(Ⅰ)設(shè)線段
的中點
的坐標為
,
由中點坐標公式得
(
為參數(shù)),
消去參數(shù)得
的軌跡的直角坐標方程為
,
由互化公式可得點
的軌跡的極坐標方程為
.
(Ⅱ)由直線
的極坐標方程為
,得
,
所以直線
的直角坐標方程為
,
曲線
的普通方程為
,它表示以
為圓心,2為半徑的圓,
則圓心到直線
的距離為
,所以直線
與圓相離,
故曲線
上的點到直線
的距離的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,且以兩焦點為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓
的標準方程;
(2)若直線
:
與橢圓
相交于
,
兩點,在
軸上是否存在點
,使直線
與
的斜率之和
為定值?若存在,求出點
坐標及該定值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,設(shè)圓
:=4 cos 與直線l:=
(∈R)交于A,B兩點.
(Ⅰ)求以AB為直徑的圓
的極坐標方程;
(Ⅱ)在圓
任取一點
,在圓
上任取一點
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若不等式
的解集為
,求實數(shù)
的值;
(2)在(1)的條件下,若存在實數(shù)
使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面
是菱形,
與
交于點
,
底面
,點
為
中點,
.
(1)求直線
與
所成角的余弦值;
(2)求平面
與平面
所成銳二面角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于任意
都有
成立,求實數(shù)
的取值范圍;
(Ⅲ)若過點
可作函數(shù)
圖象的三條不同切線,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com