分析 運用等差數(shù)列的求和公式可得,an=$\frac{1}{2}$n,化簡$\frac{1}{{a}_{n+2}{a}_{n+1}{a}_{n}}$=$\frac{8}{n(n+1)(n+2)}$=4[$\frac{1}{n(n+1)}$-$\frac{1}{(n+1)(n+2)}$],再由裂項相消求和即可得到所求.
解答 解:由題意可得an=$\frac{1+2+3+…+n}{n+1}$
=$\frac{\frac{1}{2}n(n+1)}{n+1}$=$\frac{1}{2}$n,
$\frac{1}{{a}_{n+2}{a}_{n+1}{a}_{n}}$=$\frac{8}{n(n+1)(n+2)}$=4[$\frac{1}{n(n+1)}$-$\frac{1}{(n+1)(n+2)}$],
即有前n項和為Sn=4[$\frac{1}{1•2}$-$\frac{1}{2•3}$+$\frac{1}{2•3}$-$\frac{1}{3•4}$+…+$\frac{1}{n(n+1)}$-$\frac{1}{(n+1)(n+2)}$]
=4[$\frac{1}{2}$-$\frac{1}{(n+1)(n+2)}$]=2-$\frac{4}{(n+1)(n+2)}$.
故答案為:2-$\frac{4}{(n+1)(n+2)}$.
點評 本題考查等差數(shù)列的求和公式的運用,考查數(shù)列的求和方法:裂項相消求和,以及化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 向左平移$\frac{5π}{12}$個單位 | B. | 向左平移$\frac{5π}{36}$個單位 | ||
| C. | 向左平移$\frac{π}{12}$個單位 | D. | 向左平移$\frac{π}{36}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com