分析 (Ⅰ)圓C的極坐標(biāo)方程轉(zhuǎn)化為${ρ^2}=4ρ(\frac{{\sqrt{3}}}{2}cosθ+\frac{1}{2}sinθ)$,由此能求出圓C的直角坐標(biāo)方程.
(Ⅱ)由圓C的方程轉(zhuǎn)化為${(x-\sqrt{3})^2}+{(y-1)^2}=4$,得到圓C的圓心是$(\sqrt{3},1)$,半徑是2,將$\left\{{\begin{array}{l}{x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$,代入$u=\sqrt{3}x+y$,得u=4-t,由此能求出$u=\sqrt{3}x+y$的取值范圍.
解答 解:(Ⅰ)因?yàn)閳AC的極坐標(biāo)方程為$ρ=4cos(θ-\frac{π}{6})$,
所以${ρ^2}=4ρ(\frac{{\sqrt{3}}}{2}cosθ+\frac{1}{2}sinθ)$
所以圓C的直角坐標(biāo)方程${x^2}+{y^2}-2\sqrt{3}x-2y=0$.
(Ⅱ)由圓C的方程${x^2}+{y^2}-2\sqrt{3}x-2y=0$,可得${(x-\sqrt{3})^2}+{(y-1)^2}=4$,
所以圓C的圓心是$(\sqrt{3},1)$,半徑是2,
將$\left\{{\begin{array}{l}{x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$,代入$u=\sqrt{3}x+y$,得u=4-t,
又直線l過(guò)$C(\sqrt{3},1)$,圓C的半徑是2,所以-2≤t≤2,
即$u=\sqrt{3}x+y$的取值范圍是[2,6].
點(diǎn)評(píng) 本題考查圓的直角坐標(biāo)的求法,考查代數(shù)式的取值范圍的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $6\sqrt{3}$ | B. | $4\sqrt{7}$ | C. | $8\sqrt{7}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{4}{3}$ | B. | 2 | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com