分析 (Ⅰ)欲證EF∥平面ABC1D1,只需在平面ABC1D1中找一直線與EF平行,根據(jù)E、F分別為DD1、DB的中點,可得EF∥BD1,最后根據(jù)線面平行的判定定理可得結(jié)論;
(Ⅱ)由題意,可先證明出CF⊥平面BDD1B1,由此得出三棱錐的高,再求出底面△B1EF的面積,然后再由棱錐的體積公式即可求得體積.
解答 (Ⅰ)證明:連接BD1,
∵E、F分別為DD1、DB的中點,![]()
∴EF是三角形BD1D的中位線,即EF∥BD1;…(3分)
又EF?平面ABC1D1,BD1?平面ABC1D1,…(5分)
所以EF∥平面ABC1D1
(Ⅱ)解:∵EF⊥平面B1FC,∴EF⊥FB1
EF=$\sqrt{3}$,F(xiàn)B1=$\sqrt{6}$
Rt△B1EF的面積=$\frac{1}{2}$×EF×FB1=$\frac{1}{2}$×$\sqrt{3}$×$\sqrt{6}$=$\frac{3}{2}\sqrt{2}$![]()
∵CB=CD,BF=DF,∴CF⊥BD.
∵DD1⊥平面ABCD,∴DD1⊥CF
又DD1∩BD=D,∴CF⊥平面BDD1B1
又CF=$\sqrt{2}$,
∴VB1-EFC=${V_{C-{B_1}EF}}=\frac{1}{3}•{S_{△{B_1}EF}}•CF=\frac{1}{3}•\frac{{3\sqrt{2}}}{2}•\sqrt{2}$=1…(12分)
點評 本題主要考查了線面平行的判定定理、線面垂直的判定定理,考查三棱錐的體積,同時考查了推理論證的能力和空間想象能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{11}{5}$ | B. | $\sqrt{3}$ | C. | $\frac{11}{5}$+$\sqrt{3}$i | D. | $\frac{11}{5}$+2$\sqrt{3}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\overrightarrow{e_1}=(-1,2),\overrightarrow{e_2}=(3,-1)$ | B. | $\overrightarrow{e_1}=(1,3),\overrightarrow{e_2}=(2,6)$ | ||
| C. | $\overrightarrow{e_1}=(0,0),\overrightarrow{e_2}=(-1,2)$ | D. | $\overrightarrow{e_1}=(1,1),\overrightarrow{e_2}=(3,3)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{9}$ | B. | 1 | C. | 6 | D. | 9 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com