| A. | 9+2$\sqrt{14}$ | B. | 4+2$\sqrt{6}$ | C. | 9+2$\sqrt{15}$ | D. | 5+2$\sqrt{6}$ |
分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義確定取得最大值的條件,然后利用基本不等式進(jìn)行求則$\frac{1}{a}$+$\frac{1}$的最小值.
解答
解:由z=ax+by(a>0,b>0)得$y=-\frac{a}x+\frac{z}$,
∵a>0,b>0,∴直線的斜率$-\frac{a}<0$,
作出不等式對(duì)應(yīng)的平面區(qū)域如圖:
平移直線得$y=-\frac{a}x+\frac{z}$,由圖象可知當(dāng)直線$y=-\frac{a}x+\frac{z}$經(jīng)過(guò)點(diǎn)A時(shí),直線$y=-\frac{a}x+\frac{z}$的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{2x-y+6=0}\\{4x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=14}\end{array}\right.$,即A(4,14),
此時(shí)目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為2,
即4a+14b=2,∴2a+7b=1,
$\frac{1}{a}$+$\frac{1}$=($\frac{1}{a}$+$\frac{1}$)×1=($\frac{1}{a}$+$\frac{1}$)×(2a+7b)=2+7+$\frac{7b}{a}$+$\frac{2a}$≥9+2$\sqrt{\frac{7b}{a}•\frac{2a}}$=9+2$\sqrt{14}$,
當(dāng)且僅當(dāng)$\frac{7b}{a}$=$\frac{2a}$,即2a2=7b2時(shí)取等號(hào).
故$\frac{1}{a}$+$\frac{1}$的最小值為9+2$\sqrt{14}$,
故選:A.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合求出目標(biāo)函數(shù)取得最大值的條件是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com