| A. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | B. | $\frac{1}{2}$+$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 分析不等式左邊的項的特點(diǎn),即可得出結(jié)論.
解答 解:在$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{3n+1}$>1(n∈N+)中,
當(dāng)n=1時,3n+1=4,
故n=1時,等式左邊的項為:$\frac{1}{2}$+$\frac{1}{3}$$+\frac{1}{4}$,
故選:A.
點(diǎn)評 本題考查的知識點(diǎn)是數(shù)學(xué)歸納法的步驟,在數(shù)學(xué)歸納法中,第一步是論證n=1時結(jié)論是否成立,此時一定要分析等式兩邊的項,不能多寫也不能少寫,否則會引起答案的錯誤.解此類問題時,注意n的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3-2 | B. | 0.3-2 | C. | log0.32 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{5}$ | B. | $2\sqrt{5}$ | C. | $3\sqrt{5}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 667 | B. | 668 | C. | 669 | D. | 670 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com