直線與雙曲線位置關(guān)系的判定及應(yīng)用
已知雙曲線C的方程為
-
=1(a>0,b>0),離心率e=
,頂點(diǎn)到漸近線的距離為
.
![]()
(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點(diǎn),A、B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限.
若
=λ
,λ∈
.求△AOB的面積的取值范圍.
解:(1)由題意知,雙曲線C的頂點(diǎn)(0,a)到漸近線ax-by=0的距離為
,
∴
=
,即
=
.
由
得![]()
∴雙曲線C的方程為
-x2=1.
(2)由(1)知雙曲線C的兩條漸近線方程為y=±2x,
設(shè)A(m,2m),B(-n,2n),m>0,n>0.
由
=λ
得P點(diǎn)坐標(biāo)為
,
將P點(diǎn)坐標(biāo)代入
-x2=1,化簡(jiǎn)得mn=
.
設(shè)∠AOB=2θ,∵tan(
-θ)2.
∴tan θ=
,sin 2θ=
.
又|OA|=
m,|OB|=
n,
∴S△AOB=
|OA|·|OB|·sin 2θ
=2mn
=![]()
+1,
記S(λ)= ![]()
+1,λ∈
.
則S′(λ)= ![]()
.
由S′(λ)=0得λ=1.
又S(1)=2,S
=
,S(2)=
,
∴當(dāng)λ=1時(shí),△AOB的面積取得最小值2,當(dāng)λ=
時(shí),
△AOB的面積取得最大值
.
∴△AOB面積的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)當(dāng)a=1,b=2時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)設(shè)x1,x2是f(x)的兩個(gè)極值點(diǎn),x3是f(x)的一個(gè)零點(diǎn),且x3≠x1,x3≠x2.證明:存在實(shí)數(shù)x4,使得x1,x2,x3,x4按某種順序排列后構(gòu)成等差數(shù)列,并求x4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則|PF1|·|PF2|=( )
(A)2 (B)4 (C)6 (D)8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過雙曲線C:
-
=1(a>0,b>0)的一個(gè)焦點(diǎn)作圓x2+y2=a2的兩條切線,切點(diǎn)分別為A、B.若∠AOB=120°(O是坐標(biāo)原點(diǎn)),則雙曲線C的離心率為 .
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線
-
=1(a>0,b>0),過其右焦點(diǎn)F且垂直于實(shí)軸的直線與雙曲線交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn).若OM⊥ON,則雙曲線的離心率為( )
(A)
(B)![]()
(C)
(D)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1,F2為雙曲線Ax2-By2=1的焦點(diǎn),其頂點(diǎn)是線段F1F2的三等分點(diǎn),則其漸近線的方程為( )
(A)y=±2
x (B)y=±
x
(C)y=±x (D)y=±2
x或y=±
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若一個(gè)橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等差數(shù)列,則該橢圓的離心率是( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線
-
=1(a>0,b>0)的一條漸近線方程是y=
x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為( )
(A)
-
=1 (B)
-
=1
(C)
-
=1 (D)
-
=1
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com