[2012·湖南卷] 某幾何體的正視圖和側(cè)視圖均如圖1-1所示,則該幾何體的俯視圖不可能是( )
![]()
圖1-1
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考湖南卷理科5)已知雙曲線C :
-
=1的焦距為10 ,點(diǎn)P (2,1)在C 的漸近線上,則C的方程為
A.
-
=1 B.
-
=1 C.
-
=1 D.
-
=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
[2012·湖南卷] 如圖1-7,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(1)證明:BD⊥PC;
(2)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
[2012·湖南卷] 如圖1-7,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(1)證明:BD⊥PC;
(2)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考湖南卷理科21)(本小題滿分13分)
在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com