分析 (1)利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,再利用余弦函數(shù)的周期性和單調(diào)性,得出結(jié)論.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用余弦函數(shù)的定義域和值域,求得g(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.
解答 解:(1)函數(shù)f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x=cos2xcos$\frac{2π}{3}$-sin2xsin$\frac{2π}{3}$+cos2x+1
=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+1=cos(2x+$\frac{π}{3}$)+1,
故函數(shù)的最小正周期為T=$\frac{2π}{2}$=π,
令2kπ+π≤2x+$\frac{π}{3}$≤2kπ+2π,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,求得函數(shù)的增區(qū)間為[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個單位長度后得到函數(shù)g(x)=cos[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]+1
=cos(2x-$\frac{2π}{3}$+$\frac{π}{3}$)+1=cos(2x-$\frac{π}{3}$)+1的圖象,
由x∈[0,$\frac{π}{2}$],可得:2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
可得:cos(2x-$\frac{π}{3}$)∈[-$\frac{1}{2}$,1],
解得:g(x)=cos(2x-$\frac{π}{3}$)+1∈[$\frac{1}{2}$,2].
點評 本題主要考查三角函數(shù)的恒等變換,余弦函數(shù)的周期性和單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的定義域和值域,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ${x^2}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}-{y^2}=1$ | C. | $\frac{y^2}{4}-{x^2}=1$ | D. | ${y^2}-\frac{x^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $8+4\sqrt{2}$ | B. | $6+\sqrt{2}+2\sqrt{3}$ | C. | $6+4\sqrt{2}$ | D. | $6+2\sqrt{2}+2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| x | 2 | 4 | 6 | 8 | 10 |
| y | 3 | 6 | 7 | 10 | 12 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com