欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知函數(shù)f(x)=asin2x+bcos2x(a,b∈R,且ab≠0)的圖象關(guān)于x=$\frac{π}{6}$對(duì)稱,則函數(shù)y=f(x)的圖象的一個(gè)對(duì)稱中心是( 。
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{3}$,0)D.($\frac{5π}{12}$,0)

分析 利用輔助角公式求出f(x)的周期,根據(jù)對(duì)稱軸與對(duì)稱中心的關(guān)系得出.

解答 解:f(x)=$\sqrt{{a}^{2}+^{2}}$sin(2x+φ),∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
設(shè)f(x)的對(duì)稱中心為(x,0),則x-$\frac{π}{6}$=$\frac{π}{4}$+kπ,或x-$\frac{π}{6}$=$\frac{3π}{4}$+kπ.
∴x=$\frac{5π}{12}$+kπ,或x=$\frac{11π}{12}$+kπ.k∈Z.
故選D.

點(diǎn)評(píng) 本題考查了三角函數(shù)的輔助角公式,對(duì)稱中心和對(duì)稱軸的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,0≤x≤4\\{log_{\frac{1}{4}}}(x-3)+1,x>4\end{array}\right.$,若實(shí)數(shù)a、b、c互不相等,且滿足f(a)=f(b)=f(c),則a+b+c的取值范圍是(8,23).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(\;a>b>0\;)$的兩個(gè)焦點(diǎn)F1,F(xiàn)2在x軸上,P為此橢圓上一點(diǎn),且滿足$∠P{F_1}{F_2}=\frac{π}{6},∠PO{F_2}=\frac{π}{3}$,則此橢圓的離心率是(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.2$\sqrt{2}$-2D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩點(diǎn)A(1,2),B(4,-2),則與向量$\overrightarrow{AB}$共線的單位向量$\overrightarrow{e}$是( 。
A.(3,-4)B.(3,-4),(-3,4)C.($\frac{3}{5}$,一$\frac{4}{5}$)D.($\frac{3}{5}$,一$\frac{4}{5}$),(一$\frac{3}{5}$,$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.點(diǎn)M到點(diǎn)A(0,-2)和點(diǎn)B(0,2)的距離之和為8,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=4cos($\frac{5π}{12}$x+φ)(|φ|<π),且f(3+x)=f(3-x),則φ的值為-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.己知某氣墊船的最大船速為48海里每小時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比,若船速為30海里每小時(shí),則每小時(shí)的燃料費(fèi)用為600元,其余費(fèi)用(不論船速多少)都是每小時(shí)864元,甲乙兩地相距100海里,船從甲地行駛到乙地.
(1)試把船從甲地行駛到乙地所需的總費(fèi)用y元表示成船速x海里每小時(shí)的函數(shù);
(2)當(dāng)船速為多少海里每小時(shí)時(shí),總費(fèi)用最少?最少總費(fèi)用為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知球O半徑為$\sqrt{5}$,設(shè)S、A、B、C是球面上四個(gè)點(diǎn),其中∠ABC=120°,AB=BC=2,平面SAC⊥平面ABC,則棱錐S-ABC的體積的最大值為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案