分析 由題意建立坐標系,假設點C在圓內,B(0,0),A(2,0),C(rcosa,rsina),(r<$\frac{1}{2}$),從而利用坐標表示出向量,從而可得λ=-2rcosa+r2,從而求得.
解答
解:由題意建立坐標系如右圖,
假設點C在圓內,
則B(0,0),A(2,0),C(rcosa,rsina),(r<$\frac{1}{2}$),
則$\overrightarrow{CA}$=(2-rcosa,-rsina),$\overrightarrow{CB}$=(-rcosa,-rsina),
∴λ=(2-rcosa,-rsina)•(-rcosa,-rsina)
=-2rcosa+r2(cos2a+sin2a)
=-2rcosa+r2,
∴r2-2r≤λ≤r2+2r,
故-$\frac{3}{4}$<λ<$\frac{5}{4}$,
∵點C總不在以點B為圓心,$\frac{1}{2}$為半徑的圓內,
∴λ≤-$\frac{3}{4}$或λ≥$\frac{5}{4}$(舍);
故實數(shù)λ的最大值是-$\frac{3}{4}$,
故答案為:-$\frac{3}{4}$.
點評 本題考查了平面向量的坐標表示的應用及數(shù)量積的求法,同時考查了數(shù)形結合的思想與轉化思想的應用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [-18,6] | B. | [6-5$\sqrt{2}$,6+5$\sqrt{2}$] | C. | [-16,4] | D. | [-6-5$\sqrt{2}$,-6+5$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | ($\frac{\sqrt{3}}{3}$,1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com