欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.設Sn是數(shù)列{an}的前n項和,an>0,且Sn=$\frac{1}{6}$an(an+3)
(1)求數(shù)列{an}的通項公式;
(2)設cn=$\frac{{a}_{n}}{{2}^{n-1}}$,Bn是數(shù)列{cn}的前n項和,求Bn.(若改為cn=an+2n-1呢?)
(3)設bn=$\frac{1}{{(a}_{n}-1)({a}_{n}+2)}$,Tn=b1+b2+…+bn,求證:Tn<$\frac{1}{6}$.

分析 (1)通過Sn=$\frac{1}{6}$an(an+3)與Sn-1=$\frac{1}{6}$an-1(an-1+3)作差、整理可知an-an-1=3,進而可知數(shù)列{an}是首項、公差均為3的等差數(shù)列,計算即得結論;
(2)①若cn=$\frac{{a}_{n}}{{2}^{n-1}}$,利用錯位相減法計算可知Bn=12-6•$\frac{n+2}{{2}^{n}}$;②若cn=an+2n-1,利用分組求和法計算可知Bn=$\frac{3n(n+1)}{2}$+2n-1;
(3)通過(1)裂項可知bn=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),進而并項相加、放縮即得結論.

解答 (1)解:∵Sn=$\frac{1}{6}$an(an+3),
∴當n≥2時,Sn-1=$\frac{1}{6}$an-1(an-1+3),
兩式相減得:an=$\frac{1}{6}$an(an+3)-$\frac{1}{6}$an-1(an-1+3),
整理得:(an+an-1)(an-an-1)=3(an+an-1
又∵an>0,
∴an-an-1=3,
∵S1=$\frac{1}{6}$a1(a1+3),解得:a1=3或a1=0(舍),
∴數(shù)列{an}是首項、公差均為3的等差數(shù)列,
∴an=3n;
(2)解:①由(1)可知cn=$\frac{{a}_{n}}{{2}^{n-1}}$=3n•$\frac{1}{{2}^{n-1}}$,
∴Bn=3(1•$\frac{1}{{2}^{1-1}}$+2•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n-1}}$),
$\frac{1}{2}$Bn=3[1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$],
兩式相減得:$\frac{1}{2}$Bn=3(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$)
=3•($\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$)
=6-3•$\frac{n+2}{{2}^{n}}$,
∴Bn=12-6•$\frac{n+2}{{2}^{n}}$;
②由(1)可知cn=an+2n-1=3n+2n-1,
∴Bn=3•$\frac{n(n+1)}{2}$+$\frac{1-{2}^{n}}{1-2}$=$\frac{3n(n+1)}{2}$+2n-1;
(3)證明:由(1)可知bn=$\frac{1}{{(a}_{n}-1)({a}_{n}+2)}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),
∴Tn=b1+b2+…+bn
=$\frac{1}{3}$($\frac{1}{3-1}$-$\frac{1}{3+2}$+$\frac{1}{3+2}$-$\frac{1}{3×2+2}$+…+$\frac{1}{3n-1}$-$\frac{1}{3n+2}$)
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{3n+2}$)
<$\frac{1}{6}$.

點評 本題考查數(shù)列的通項公式及前n項和,考查錯位相減法,考查裂項相消法,考查分組求和法,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=|x-2|-|x+1|
(Ⅰ)解不等式:f(x)<2;
(Ⅱ)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.2015年7月31日,國際奧委會在吉隆坡正式宣布2022年奧林匹克冬季奧運會(簡稱冬奧會)在北京和張家口兩個城市舉辦.某中學為了普及奧運會知識,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)求甲組學生的平均分;
(2)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(3)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取3人,用ξ表示所選3人中甲組的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學期望.
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知線段AB的長為2,動點C滿足$\overrightarrow{CA}$•$\overrightarrow{CB}$=λ(λ為負常數(shù)),且點C總不在以點B為圓心,$\frac{1}{2}$為半徑的圓內,則實數(shù)λ的最大值是-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=-$\frac{1}{x}$,g(x)與f(x)的圖象關于點M(-$\frac{1}{2}$,$\frac{1}{2}$)對稱.
(1)求g(x)解析式;
(2)若g(2x)=a有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.將函數(shù)f(x)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位后得到函數(shù)g(x)=sin2x的圖象,若對滿足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{3}$,則φ=( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知全集為R,集合A={x|$\frac{x-1}{x}$<0},B={x|x≥1},則A∪B等于( 。
A.{x|x>0}B.{x|0<x<1}C.{x|x<1}D.{x|x≤0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.公共汽車一共要?9站,甲、乙兩名互不相識的乘客在始發(fā)站上車,如果他們在每站下車的概率是相同的,計算:
(1)甲在第2站下車、乙在第3站下車的概率;
(2)甲、乙都在第3站下車的概率;
(3)甲、乙同時在第3站或第4站下車的概率:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.用1,2,3,4這四個數(shù)字組成比2000大,且百位數(shù)不是1的無重復數(shù)字的四位數(shù)有多少個?

查看答案和解析>>

同步練習冊答案