分析 (1)先證明AF∥平面CDE,AB∥平面CDE,即可證明平面BAF∥平面CDE;
(2)證明AC⊥平面EBD平面EAC⊥平面EBD;
(3)BM=$\frac{1}{3}$BD時(shí),AM∥平面BEF,證明AMNF是平行四邊形得出AM∥FN,即可證明AM∥平面BEF.
解答
證明:(1)∵AF∥DE,AF?平面CDE,DE?平面CDE,
∴AF∥平面CDE.
同理,AB∥平面CDE,
∵AF∩AB=A,
∴平面BAF∥平面CDE;
(2)∵四邊形ABCD是菱形,
∴AC⊥BD,
∵DE⊥平面ABCD,AC?平面ABCD,
∴AC⊥DE,
∵BD∩DE=D.
∴AC⊥平面EBD,
∵AC?平面EAC,
∴平面EAC⊥平面EBD;
解:(3)BM=$\frac{1}{3}$BD時(shí),AM∥平面BEF,理由如下:
作MN∥ED,則MN平行且等于$\frac{1}{3}$BD,
∵AF∥DE,DE=3AF,∴AF平行且等于MN,
∴AMNF是平行四邊形,
∴AM∥FN,
∵AM?平面BEF,F(xiàn)N?平面BEF,
∴AM∥平面BEF
點(diǎn)評 本題考查線面平行、平面與平面平行的判定,考查學(xué)生分析解決問題的能力,正確證明線面平行是關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 240 | B. | -240 | C. | -60 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | $\frac{1}{3}$ | C. | -3 | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com