分析 由題意,A,C關(guān)于原點(diǎn)對(duì)稱,利用AC⊥AB,斜率為1,可得A($-\frac{c}{2},\frac{c}{2}$),代入雙曲線方程,可得e的方程,即可求出e的值.
解答 解:由題意,A,C關(guān)于原點(diǎn)對(duì)稱,
∵AC⊥AB,直線斜率為1
∴A($-\frac{c}{2},\frac{c}{2}$)
代入雙曲線方程可得$\frac{\frac{{c}^{2}}{4}}{{a}^{2}}-\frac{\frac{{c}^{2}}{4}}{^{2}}=1$,
化簡(jiǎn)可得e4-6e2+4=0,
∵e>1,
∴e2=$\frac{(\sqrt{5}+1)^{2}}{2}$,
∴e=$\frac{\sqrt{10}+\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{10}+\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,確定A的坐標(biāo)是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com