欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知拋物線y2=2px(p>0)的焦 點(diǎn)為F,A是拋物線上橫坐標(biāo)為4、且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5.過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.
(1)求拋物線方程.
(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動(dòng)點(diǎn)時(shí),討論直線AK與圓M的位置關(guān)系.

分析 (1)利用拋物線的定義,求出p,即可求拋物線方程.
(2)分類討論,結(jié)合圓心M(0,2)到直線AK的距離,即可討論直線AK與圓M的位置關(guān)系.

解答 解:(1)因?yàn)锳是拋物線上橫坐標(biāo)為4、且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5,
所以4+$\frac{p}{2}$=5,
所以p=2,
所以拋物線方程為:y2=4x…(2分)
(2)由題意得,圓M的圓心是點(diǎn)(0,2),半徑為2.
當(dāng)m=4時(shí),直線AK的方程為x=4,此時(shí),直線AK與圓M相離,…(10分)
當(dāng)m≠4時(shí),直線AK的方程為$y=\frac{4}{4-m}(x-m)$即為4x-(4-m)y-4m=0
圓心M(0,2)到直線AK的距離$d=\frac{{\left|{2m+8\left.{\;}\right|}\right.}}{{\sqrt{16+{{(m-4)}^2}}}}$,令d>2,得m>1…(12分)
故當(dāng)m>1時(shí),直線AK與圓M相離;當(dāng)m=1時(shí),直線AK與圓M相切;當(dāng)m<1時(shí),直線AK與圓M相交.…(14分)

點(diǎn)評(píng) 本題考查拋物線的定義,考查直線與圓的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)數(shù)列{an}是公差為d的等差數(shù)列,且a5=6.
(1)若d∈N*,其數(shù)列{an}中任意連續(xù)兩項(xiàng)的和仍為數(shù)列{an}中的項(xiàng),求d的值;
(2)若a3>1,且自然數(shù)n1,n2,…,nt,…(t∈N*)滿足5<n1<n2<…<n2<…,使得a3,a5,an1,…,ant,…成等比數(shù)列,求a3的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x-1}{x+2}$,x∈[3,5]
(1)判斷函數(shù)f(x)的單調(diào)性并用定義證明你的結(jié)論.
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a、b分別為直線y=x+1的斜率與縱截距,復(fù)數(shù)z=$\frac{(a-i)(b+i)}{i}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為( 。
A.1B.2C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知$\overrightarrow{a}$=(x+1,y),$\overrightarrow$=(x-1,y),其中x,y∈R,且|$\overrightarrow{a}$|+|$\overrightarrow$|=4,動(dòng)點(diǎn)P(x,y)的軌跡為L(zhǎng).
(Ⅰ)求動(dòng)點(diǎn)P(x,y)的軌跡方程;
(Ⅱ)已知點(diǎn)F1(-1,0),過(guò)點(diǎn)F2(1,0)的直線l與軌跡L相交于A,B兩點(diǎn),問(wèn)△ABF1的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若sinθ+cosθ=-$\frac{4}{3}$,則θ只可能是第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知正三棱柱ABC-A1B1C1體積為$\frac{9}{4}$,底面是邊長(zhǎng)為$\sqrt{3}$.若P為底面ABC的中心,則PA1與平面BB1P所成角的正切值大小為( 。
A.$\frac{1}{36}$B.$\frac{3}{109}$C.$\frac{{\sqrt{39}}}{13}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直線2xcosα-y-3=0(α∈[$\frac{π}{6}$,$\frac{π}{3}$])的傾斜角的范圍是[$\frac{π}{4}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.銳角△ABC中:
①sinA+sinB+sinC>cosA+cosB+cosC
②tanAtanB>1
③sin2A+sin2B+sin2C>$\frac{3}{2}$
④sinA+sinB≥$\sqrt{2}$
其中一定成立的有①②③(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案