分析 (1)求出導(dǎo)數(shù),求出切線的斜率,由點(diǎn)斜式方程,即可得到曲線在點(diǎn)P(1,1)處的切線方程;
(2)y=0時(shí),x=$\frac{2}{3}$;x=2時(shí),y=4,即可求直線l與x軸、直線x=2所圍成的三角形的面積.
解答 解:(1)y=x3的導(dǎo)數(shù)為y′=3x2,則曲線在點(diǎn)P(1,1)處的切線斜率為3,即有曲線在點(diǎn)P(1,1)處的切線方程為y-1=3(x-1),即3x-y-2=0;
(2)y=0時(shí),x=$\frac{2}{3}$;x=2時(shí),y=4,
∴直線l與x軸、直線x=2所圍成的三角形的面積為$\frac{1}{2}×(2-\frac{2}{3})×4$=$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義:曲線在該點(diǎn)處的切線的斜率,考查直線方程的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ($\frac{kπ}{2}$,0),k∈Z | B. | (kπ,0),k∈Z | C. | (k$π-\frac{π}{4}$,0),k∈Z | D. | ($\frac{kπ}{2}$-$\frac{π}{4}$,0),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com