分析 由向量運(yùn)算可得R為AC的一個(gè)三等分點(diǎn),由已知數(shù)據(jù)可得cos∠BAD=$\frac{11}{24}$,可求$|\overrightarrow{AC}|$,可得答案.
解答
解:由題意可得$\overrightarrow{AR}$=$\overrightarrow{AB}$+$\overrightarrow{BR}$=$\overrightarrow{AB}$+λ$\overrightarrow{BE}$
=$\overrightarrow{AB}$+λ($\overrightarrow{AE}$-$\overrightarrow{AB}$)=$\overrightarrow{AB}$+λ($\frac{1}{2}$$\overrightarrow{AD}$-$\overrightarrow{AB}$)
=(1-λ)$\overrightarrow{AB}$+$\frac{1}{2}$λ$\overrightarrow{AD}$,
又A、R、C共線,∴$\overrightarrow{AR}$=t$\overrightarrow{AC}$
=t($\overrightarrow{AB}$+$\overrightarrow{AD}$)=t$\overrightarrow{AB}$+t$\overrightarrow{AD}$,
∴$\left\{\begin{array}{l}{1-λ=t}\\{\frac{1}{2}λ=t}\end{array}\right.$,解得t=$\frac{1}{3}$,
即R為AC的一個(gè)三等分點(diǎn),∴|$\overrightarrow{AR}$|=$\frac{1}{3}$$|\overrightarrow{AC}|$,
∵AB=4,AD=3,BD=$\sqrt{14}$,
又∵$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$,∴$\overrightarrow{BD}$2=($\overrightarrow{AD}$-$\overrightarrow{AB}$)2,
∴14=16+9-2×4×3×cos∠BAD,解得cos∠BAD=$\frac{11}{24}$
∴$|\overrightarrow{AC}|$2=($\overrightarrow{AD}$+$\overrightarrow{AB}$)2=16+9+2×4×3×cos∠BAD=36,
∴$|\overrightarrow{AC}|$=6,∴|$\overrightarrow{AR}$|=$\frac{1}{3}$$|\overrightarrow{AC}|$=2
故答案為:2
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積,涉及平面向量基本定理和向量的共線以及模長公式,屬中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 網(wǎng)購金額 (單位:元) | 頻數(shù) | 頻率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.30 |
| (2500,3000] | y | q |
| 合計(jì) | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com