分析 利用正弦定理化簡已知的等式,再利用兩角和的正弦函數(shù)公式及誘導(dǎo)公式化簡,根據(jù)sinB不為0,得到cosA的值,利用余弦定理即可求得a2=(b-$\sqrt{3}$)2+9,結(jié)合b的范圍即可得解.
解答 解:將(2b-c)cosA=acosC代入正弦定理得:(2sinB-sinC)cosA=sinAcosC,
即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sinB,
由B∈(0,180°),得到sinB≠0,
所以cosA=$\frac{1}{2}$,
因為c=2$\sqrt{3}$,
所以由余弦定理可得:a2=b2+c2-2bccosA=b2+12-2$\sqrt{3}$b=(b-$\sqrt{3}$)2+9,
因為:b∈[1,3],
所以當(dāng)b=$\sqrt{3}$時,a的最小值為:3.
故答案為:3.
點評 此題考查學(xué)生靈活運用正弦定理化簡求值,靈活運用兩角和的正弦函數(shù)公式及誘導(dǎo)公式化簡求值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 原點對稱 | B. | y軸對稱 | C. | x軸對稱 | D. | 直線y=x對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com