分析 (1)連結(jié)AF,BF,證明EF與AB,CD垂直且相交,即可得出結(jié)論;
(2)在Rt△AEF中,根據(jù)勾股定理可求出所求.
解答
(1)證明:連結(jié)AF,BF.
由△ACD,△BCD為等邊三角形,F(xiàn)為CD的中點(diǎn),
∴AF=BF.
又E為CD的中點(diǎn),
∴EF⊥AB.
同理,EF⊥CD.
又EF與AB,CD都相交,故線段EF是異面直線AB與CD的公垂線段.
(2)在Rt△AEF中,AF=$\frac{\sqrt{3}}{2}$a,AE=$\frac{1}{2}$a,
∴EF=$\frac{\sqrt{2}}{2}$a
故異面直線AB與CD的距離為$\frac{\sqrt{2}}{2}$a.
點(diǎn)評(píng) 本題主要考查異面直線公垂線的證明、距離的計(jì)算,比較基礎(chǔ).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,+∞) | B. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) | C. | (-$∞,-\frac{\sqrt{3}}{2}$) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com