分析 (1)設x<0,則-x>0,根據函數f(x)為R上的偶函數,當x≥0時,f(x)=-x2+2x+1,可得函數解析式;
(2)根據函數的解析式,可得函數的圖象;
(3)利用函數的圖象,可得函數的單調區(qū)間與函數的值域.
解答 解:(1)設x<0,則-x>0
因為函數f(x)為R上的偶函數,所以f(x)=f(-x)=-x2-2x
所以f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$;
(2)函數f(x)的圖象如圖所示:![]()
(3)由圖象可知:f(x)的單調增區(qū)間為(-∞,-1),(0,1),f(x)的單調減區(qū)間為(-1,0),(1,+∞),f(x)的值域是(-∞,1].
點評 本題考查函數的解析式,考查函數的奇偶性,考查函數的圖象,考查數形結合的數學思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 4x2+9y2=36 | B. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{20}$=1 | C. | 9x2+4y2=36 | D. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com