欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.如圖是導(dǎo)函數(shù)y-f′(x)的圖象,那么函數(shù)的極大值點(diǎn)為x2

分析 利用函數(shù)取得極大值的充分條件即可得出.

解答 解:只有一個(gè)極大值點(diǎn)x2,
∵當(dāng)x1<x<x2時(shí),f′(x)>0,
當(dāng)x2<x<x3時(shí),f′(x)<0,且f′(x2)=0,
∴函數(shù)f(x)在x=x2處取得極大值.
而其它點(diǎn)處不滿足極大值的條件.
故答案為:x2

點(diǎn)評(píng) 熟練掌握函數(shù)取得極大值的充分條件是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,則ab的取值范圍是( 。
A.(0,4)B.(0,4]C.[4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對(duì)應(yīng)邊分別為a,b,c,已知$\overrightarrow{m}$=(3,2sinA),$\overrightarrow{n}$=(sinA,1+cosA)滿足$\overrightarrow{m}$∥$\overrightarrow{n}$,且a=$\sqrt{7}$(c-b).
(Ⅰ)求∠A的值;
(Ⅱ)求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$表示為$\overrightarrow{BA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.$\frac{1+tan15°}{1-tan15°}$的值為(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.2+$\sqrt{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.關(guān)于函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),則
①y=f(x)的最大值為$\sqrt{2}$;
②y=f(x)的最小正周期是π;
③y=f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{13π}{24}}$]上是減函數(shù);
④將函數(shù)y=$\sqrt{2}$cos2x的圖象向右平移$\frac{π}{24}$個(gè)單位后,將與已知函數(shù)的圖象重合.
其中正確的是(  )
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.觀察下列不等式:①$\frac{1}{{\sqrt{3}}}$<1;②$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}<\sqrt{2}$;③$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}+\frac{1}{{\sqrt{12}}}<\sqrt{3}$…,則第5個(gè)等式為$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}+\frac{1}{{\sqrt{12}}}+\frac{1}{{\sqrt{24}}}+\frac{1}{{\sqrt{48}}}<\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.制造容積為$\frac{π}{2}$立方米的無蓋圓柱形桶,用來做底面的金屬板的價(jià)格為每平方米30元,用來做側(cè)面的金屬板的價(jià)格為每平方米20元,要使用料成本最低,則此圓柱形桶的底面半徑和高分別為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=3,an+an-1=4n(n≥2)
(Ⅰ)求證:數(shù)列{an}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)均構(gòu)成等差數(shù)列;
(Ⅱ)求{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案