分析 (1)f′(x)=$\frac{1}{x}$-2x+1,(x>0).令f′(x)<0,即$\frac{1}{x}$-2x+1<0,解出即可得出;
(2)x>0,不等式f(x)≤($\frac{a}{2}$-1)x2+ax-1化為:a>$\frac{2lnx+2x+2}{{x}^{2}+2x}$=g(x),可得:對(duì)于任意的x>0,不等式f(x)≤($\frac{a}{2}$-1)x2+ax-1恒成立,?a>g(x)max,x>0.利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
解答 解:(1)f′(x)=$\frac{1}{x}$-2x+1,(x>0).
令f′(x)<0,即$\frac{1}{x}$-2x+1<0,解得1<x.
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是[1,+∞).
(2)∵x>0,不等式f(x)≤($\frac{a}{2}$-1)x2+ax-1化為:a>$\frac{2lnx+2x+2}{{x}^{2}+2x}$=g(x),
∴對(duì)于任意的x>0,不等式f(x)≤($\frac{a}{2}$-1)x2+ax-1恒成立,?a>g(x)max,x>0.
g′(x)=$\frac{2(x+1)(1-lnx)}{({x}^{2}+2x)^{2}}$,
令g′(x)>0,解得0<x<e,此時(shí)函數(shù)g(x)單調(diào)遞增;令g′(x)<0,解得e<x,此時(shí)函數(shù)g(x)單調(diào)遞減.
∴當(dāng)x=e時(shí),函數(shù)g(x)取得極大值即最大值,g(e)=$\frac{4+2e}{{e}^{2}+2e}$=$\frac{2}{e}$.
∴a$>\frac{2}{e}$.
∴整數(shù)a的最小值為1.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值、恒成立問題的等價(jià)轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于難題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②③ | B. | ②③④ | C. | ②④⑤ | D. | ①③⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com