【題目】已知拋物線
的焦點(diǎn)為橢圓
的右焦點(diǎn),且橢圓長軸的長為4,
、
是橢圓上的兩點(diǎn);
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線
經(jīng)過點(diǎn)
,且
,求直線
的方程;
(3)若動(dòng)點(diǎn)
滿足:
,直線
與
的斜率之積為
,是否存在兩個(gè)定點(diǎn)
、
,使得
為定值?若存在,求出
、
的坐標(biāo);若不存在,請(qǐng)說明理由;
【答案】(1)
;(2)
;(3)存在,
;
【解析】
(1)根據(jù)拋物線
的焦點(diǎn)為橢圓
的右焦點(diǎn),且橢圓的長軸長為4,求出
,
,即可求得橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)直線
的方程為
,
,
、
,
,將數(shù)量積坐標(biāo)化,得到關(guān)于
的方程;
(3)將
坐標(biāo)化,利用直線
與
的斜率之積為
,可計(jì)算
,從而可知存在兩個(gè)定點(diǎn)
,使得
為定值.
(1)
拋物線
的焦點(diǎn)為
,
,
橢圓中的
,
又由橢圓的長軸為4得
,
橢圓的標(biāo)準(zhǔn)方程為:![]()
(2)設(shè)直線
的方程為
,
,
、
,
,
將直線方程代入橢圓方程得:
,
所以
,
所以
,
因?yàn)?/span>
,所以
,
所以
,
所以
,解得:
,
所以直線方程為:
.
(3)設(shè)
,
,
、
,
,
由
,可得:
,
,
,
,
,
、
是橢圓上的點(diǎn),![]()
,
.
![]()
![]()
.
由直線
與
的斜率之積為
,可得:
,
即
,
,即
.
由橢圓定義可知存在兩個(gè)定點(diǎn)
,使得動(dòng)點(diǎn)
到兩定點(diǎn)距離和為定值
;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2﹣2xsinα+1的頂點(diǎn)在橢圓x2+my2=1上,這樣的拋物線有且只有兩條,則m的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓
和部分拋物線
合成的曲線
稱為“羽毛球開線”,曲線
與
軸有
兩個(gè)焦點(diǎn),且經(jīng)過點(diǎn)![]()
![]()
(1)求
的值;
(2)設(shè)![]()
為曲線
上的動(dòng)點(diǎn),求
的最小值;
(3)過
且斜率為
的直線
與“羽毛球形線”相交于點(diǎn)
三點(diǎn),問是否存在實(shí)數(shù)
使得
?若存在,求出
的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列
的公比
,且
,
是
、
的等差中項(xiàng).
(1)求數(shù)列
的通項(xiàng)公式;
(2)試比較
與
的大小,并說明理由;
(3)若數(shù)列
滿足
,在每兩個(gè)
與
之間都插入
個(gè)2,使得數(shù)列
變成了一個(gè)新的數(shù)列
,試問:是否存在正整數(shù)
,使得數(shù)列
的前
項(xiàng)和
?如果存在,求出
的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)
離地面4米,最低點(diǎn)
離地面2米,觀察者從距離墻
米,離地面高
米的
處觀賞該壁畫,設(shè)觀賞視角![]()
![]()
(1)若
問:觀察者離墻多遠(yuǎn)時(shí),視角
最大?
(2)若
當(dāng)
變化時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項(xiàng)惠民工程.持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為合理配置旅游資源,現(xiàn)對(duì)已游覽某簽約景區(qū)的游客進(jìn)行滿意度調(diào)查.隨機(jī)抽取100位游客進(jìn)行調(diào)查評(píng)分(滿分100分),評(píng)分的頻率分布直方圖如圖.
![]()
(1)求a的值并估計(jì)評(píng)分的平均數(shù);
(2)為了了解游客心聲,調(diào)研機(jī)構(gòu)用分層抽樣的方法從評(píng)分為
,
的游客中抽取了6名,聽取他們對(duì)該景區(qū)建設(shè)的建議.現(xiàn)從這6名游客中選取2人,求這2人中至少有一個(gè)人的評(píng)分在
內(nèi)的概率;
(3)為更廣泛了解游客想法,調(diào)研機(jī)構(gòu)對(duì)所有評(píng)分從低到高排序的前86%游客進(jìn)行了網(wǎng)上問卷調(diào)查并隨調(diào)查表贈(zèng)送小禮品,估計(jì)收到問卷調(diào)查表的游客的最高分?jǐn)?shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)
定義
已知偶函數(shù)
的定義域?yàn)?/span>
當(dāng)
且
時(shí),![]()
(1)求
并求出函數(shù)
的解析式;
(2)若存在實(shí)數(shù)
使得函數(shù)
在
上的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.若隨機(jī)變量
服從正態(tài)分布
,
,則
;
B.已知直線
平面
,直線
平面
,則“
”是“
”的充分不必要條件;
C.若隨機(jī)變量
服從二項(xiàng)分布:
,則
;
D.
是
的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論
的單調(diào)性;
(2)設(shè)
,當(dāng)
時(shí),若對(duì)任意
,存在
使
,求實(shí)數(shù)
取值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com