分析 根據(jù)φ=0,得函數(shù)f(x)=sin(x+φ)=sinx,運用奇偶性定義判斷,再由函數(shù)f(x)=sin(x+φ)為奇函數(shù)得出sinφ=0,即,φ=kπ,k∈z,
可以判斷答案.
解答 解:∵φ=0,∴函數(shù)f(x)=sin(x+φ)=sinx,
f(-x)=sin(-x)=-sin(x)=-f(x)
∴f(x)為奇函數(shù),
∵函數(shù)f(x)=sin(x+φ)為奇函數(shù),
∴sin(-x+φ)=-sin(x+φ)
sinφcosx-cosφsinx=-sinxcosφ-cosxsinφ
sinφcosx=-cosxsinφ,
即sinφ=0,φ=kπ,k∈z,
根據(jù)充分必要條件的定義可判斷:
函數(shù)f(x)=sin(x+φ)為奇函數(shù)”是“φ=0”的必要不充分條件,
故答案為:必要不充分.
點評 本題考查了函數(shù)的奇偶性的判斷,充分必要條件的判斷,屬于容易題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{2π}{3}$,π] | B. | (0,$\frac{2π}{3}$) | C. | ($\frac{π}{6}$,π] | D. | ($\frac{π}{6}$,$\frac{π}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-$\frac{1}{2}$,+∞) | B. | (-∞,-$\frac{1}{2}$] | C. | [-1,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | mqk+l-1 | B. | mql | C. | mql-1 | D. | mql+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com