分析 (1)當x<0時,-x>0,根據(jù)已知可求得f(-x),根據(jù)奇函數(shù)的性質(zhì)f(x)=-f(-x)即可求得f(x)的表達式.
(2)結合二次函數(shù)的圖象和性質(zhì),可得分段函數(shù)的單調(diào)遞增區(qū)間.
解答 解:(1)當x<0時,-x>0,
∴f(-x)=-x(1+x).…(3分)
又因為y=f(x)是奇函數(shù)
所以f(x)=-f(-x)x(1+x).…(6分)
綜上f(x)=$\left\{\begin{array}{l}x(1-x),x≥0\\ x(1+x),x<0\end{array}\right.$…(8分)
(2)函數(shù)y=f(x)的單調(diào)遞增區(qū)間是[$-\frac{1}{2}$,$\frac{1}{2}$]…(12分)
點評 本題考查的知識點是函數(shù)奇偶性的性質(zhì),難度不大,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| φx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{12}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | ||
| Asin(φx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com