欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知α,β∈(0,π),cosα=$\frac{12}{13}$,cos(α+β)=$\frac{3}{5}$,則cosβ=$\frac{56}{65}$.

分析 由已知可得α∈(0,$\frac{π}{2}$),α+β∈(0,$\frac{π}{2}$)或α+β∈($\frac{3π}{2}$,2π),當α+β∈($\frac{3π}{2}$,2π)時,由α∈(0,$\frac{π}{2}$),可得β∈(π,$\frac{3π}{2}$),矛盾,可得α+β∈(0,$\frac{π}{2}$),利用同角三角函數(shù)基本關系式可求sinα,sin(α+β),再利用兩角差的余弦公式求得cosβ=cos[(α+β)-α]的值.

解答 解:∵α,β∈(0,π),cosα=$\frac{12}{13}$>0,cos(α+β)=$\frac{3}{5}$>0,
∴α∈(0,$\frac{π}{2}$),α+β∈(0,$\frac{π}{2}$)或α+β∈($\frac{3π}{2}$,2π),
∵α+β∈($\frac{3π}{2}$,2π)時,由α∈(0,$\frac{π}{2}$),可得β∈(π,$\frac{3π}{2}$),矛盾,故α+β∈(0,$\frac{π}{2}$),
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{5}{13}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{4}{5}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=$\frac{3}{5}$×$\frac{12}{13}$+$\frac{4}{5}×\frac{5}{13}$=$\frac{56}{65}$.
故答案為:$\frac{56}{65}$.

點評 本題主要考查兩角和差的余弦公式的應用,同角三角函數(shù)的基本關系,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a,b∈R,則“a>0,b>0”是“a2+b2≥2ab”的( 。
A.既不充分也不要條件B.充分不必要條件
C.必要不充分條件D.充分必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=x|x-a|(a>0)在區(qū)間[1,2]上的最小值為2,則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.為了解我市高三學生參加體育活動的情況,市直屬某校高三學生500人參加“體育基本素質技能”比賽活動,按某項比賽結果所在區(qū)間分組:第1組:[25,300,第2組:[30,35),第3組:[35,40),第4組:[40,45),第5組:[45,50],得到不完整的人數(shù)統(tǒng)計表如下:
年齡所在區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
其頻率分布直方圖為:
(1)求人數(shù)統(tǒng)計表中的a和b的值;
(2)根據(jù)頻率分布直方圖,估計該項比賽結果的中位數(shù);
(3)用分層抽樣的方法從第1,2,3組中共抽取6人,再從這6人中隨機抽取2人參加上一級比賽活動,求參加上一級比賽活動中至少有1人的比賽結果在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系xOy中,橢圓$C:\frac{x^2}{25}+\frac{y^2}{9}=1$的左、右焦點分別是F1,F(xiàn)2,P為橢圓C上的一點,且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知F1、F2是橢圓C:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的兩個焦點,P為橢圓C上的一點,且∠F1PF2=30°,則△PF1F2的面積為8-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設D為不等式組$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ 2x+y-3≤0\end{array}\right.$表示的平面區(qū)域,圓C:(x-5)2+y2=1上的點與區(qū)域D上的點之間的距離的取值范圍是(  )
A.[$\frac{5\sqrt{2}}{2}$-1,$\sqrt{34}+1$)B.[$\sqrt{17}-1$,$\sqrt{34}+1$]C.[$\sqrt{17}$,$\sqrt{34}$]D.[$\sqrt{17}$-1,$\sqrt{34}$-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線x-9y-8=0與曲線C:y=x3-px2+3x相交于A,B,且曲線C在A,B處的切線平行,則實數(shù)p的值為(  )
A.4B.4或-3C.-3或-1D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知a,b,c分別是△ABC的角A,B,C所對的邊,且C=$\frac{π}{3}$.
(1)若c=$\sqrt{3}$a,求sinC+sin(B-A)的值;
(2)若△ABC的面積為$\sqrt{3}$,周長為6,試判斷△ABC的形狀.

查看答案和解析>>

同步練習冊答案