【題目】已知橢圓
=1(a>b>0)的離心率為
,右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合.
(1)求橢圓的方程;
(2)過F的直線l交橢圓于A、B兩點(diǎn),橢圓的左焦點(diǎn)力F',求△AF'B的面積的最大值.
【答案】
(1)解:根據(jù)題意,得F(1,0),∴c=1,
又
,∴a=2,∴b2=a2﹣c2=3,
∴橢圓的方程為: ![]()
(2)解:顯然l的斜率不為0,設(shè)l:x=my+1,
聯(lián)立直線l與橢圓方程
,化簡,得(3m2+4)y2+6my﹣9=0,
設(shè)A(x1,y1),B(x2,y2),則△>0恒成立,
由韋達(dá)定理,得y1+y2=
,y1y2=
,
∴
= ![]()
=|y1﹣y2|
= ![]()
= ![]()
=
,
令t=
,t≥1,則m2=t2﹣1,
∴
=
=
,
令
(t≥1),則
=
>0,
∴u(t)在[1,+∞)上單調(diào)遞增,
∴當(dāng)t=1即m=0時(shí),umin(t)=u(1)=4,(
)max=3,
故當(dāng)m=0時(shí),△AF'B的面積的最大值為3
【解析】(1)根據(jù)題意得F(1,0),即c=1,再通過
及c2=a2﹣b2計(jì)算可得橢圓的方程;(2)由題設(shè)l:x=my+1,A(x1 , y1),B(x2 , y2),聯(lián)立直線l與橢圓方程,結(jié)合韋達(dá)定理,得
=
,利用換元法計(jì)算即可.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列f(x1),f(x2),…f(xn),…是公差為2的等差數(shù)列,且x1=a2其中函數(shù)f(x)=logax(a為常數(shù)且a>0,a≠1).
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)若an=logaxn , 求證
+
+…+
<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣
sinxcosx+1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(θ)=
,θ∈(
,
),求sin2θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間D上,若函數(shù)y=f(x)為增函數(shù),而函數(shù)
為減函數(shù),則稱函數(shù)y=f(x)為區(qū)間D上的“弱增”函數(shù).則下列函數(shù)中,在區(qū)間[1,2]上不是“弱增”函數(shù)的為( )
A.![]()
B.![]()
C.g(x)=x2+1
D.g(x)=x2+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,已知頂點(diǎn)A(3,﹣1),∠B的內(nèi)角平分線方程是x﹣4y+10=0過點(diǎn)C的中線方程為6x+10y﹣59=0.求頂點(diǎn)B的坐標(biāo)和直線BC的方程. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(a∈R).
(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;
(Ⅱ)若過點(diǎn)P(1,4)可作曲線y=f(x)的3條切線,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,內(nèi)角A,B,C所對的邊分別為,b,c,且acosC+
c=b,若a=1,
c﹣2b=1,則角C為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列3個(gè)命題: 1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點(diǎn),則b2﹣8a<0且a>0;
3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}
(1)求實(shí)數(shù)a、b的值;
(2)解關(guān)于x的不等式
>0(c為常數(shù))
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com