【題目】已知函數(shù)f(x)=elnx,g(x)=
f(x)-(x+1).(e=2.718……)
(1)求函數(shù)g(x)的極大值;
(2)求證:1+
+
+…+
>ln(n+1)(n∈N*).
【答案】見(jiàn)解析
【解析】(1)解 ∵g(x)=
f(x)-(x+1)=lnx-(x+1),
∴g′(x)=
-1(x>0).
令g′(x)>0,解得0<x<1;
令g′(x)<0,解得x>1.
∴函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
∴g(x)極大值=g(1)=-2.
(2)證明 由(1)知x=1是函數(shù)g(x)的極大值點(diǎn),也是最大值點(diǎn),
∴g(x)≤g(1)=-2,即lnx-(x+1)≤-2lnx≤x-1(當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立),
令t=x-1,得t≥ln(t+1),t>-1,
取t=
(n∈N*)時(shí),
則
>ln
=ln
,
∴1>ln2,
>ln
,
>ln
,…,
>ln
,
疊加得1+
+
+…+
>ln(2·
·
·…·
)=ln(n+1).
即1+
+
+…+
>ln(n+1).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2=4,直線(xiàn)l:x+y=2.以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(1)將圓C和直線(xiàn)l的方程化為極坐標(biāo)方程;
(2)P是l上的點(diǎn),射線(xiàn)OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿(mǎn)足|OQ|·|OP|=|OR|2,當(dāng)點(diǎn)P在l上移動(dòng)時(shí),求點(diǎn)Q軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行試銷(xiāo),得到如下數(shù)據(jù)及散點(diǎn)圖:
![]()
其中
,
,
,
.
(1)根據(jù)散點(diǎn)圖判斷
與
,
與
哪一對(duì)具有較強(qiáng)的線(xiàn)性相關(guān)性(給出判斷即可,不必說(shuō)明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立
關(guān)于
的回歸方程(運(yùn)算過(guò)程及回歸方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為150元/
時(shí),天銷(xiāo)售額的預(yù)報(bào)值為多少元?
附:對(duì)于一組數(shù)據(jù)
,其回歸直線(xiàn)
的斜率和截距的最小二乘法估計(jì)分別為
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線(xiàn)y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
,
,設(shè)函數(shù)
.
(1)求函數(shù)
的最小正周期;
(2)已知
分別為三角形
的內(nèi)角對(duì)應(yīng)的三邊長(zhǎng),
為銳角,
,
,且
恰是函數(shù)
在
上的最大值,求
和三角形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿(mǎn)足f(a)=
的a的值,并求此時(shí)函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
, ![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155
到195
之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組
,第二組
,…,第八組
,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組
和第七組
還沒(méi)有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補(bǔ)全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為
內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在
內(nèi)的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個(gè)數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠
時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)A∪B.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com