【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.
【答案】見解析
【解析】(1)f′(x)=3x2-3a=3(x2-a),
當(dāng)a<0時,對x∈R,有f′(x)>0,
∴當(dāng)a<0時,f(x)的單調(diào)增區(qū)間為(-∞,+∞);
當(dāng)a>0時,由f′(x)>0,解得x<-
或x>
,
由f′(x)<0,解得-
<x<
,
∴當(dāng)a>0時,f(x)的單調(diào)增區(qū)間為(-∞,-
),(
,+∞);單調(diào)減區(qū)間為(-
,
).
(2)∵f(x)在x=-1處取得極值,
![]()
∴f′(-1)=3×(-1)2-3a=0,∴a=1.
∴f(x)=x3-3x-1,
f′(x)=3x2-3,
由f′(x)=0,
解得x1=-1,x2=1.
由(1)中f(x)的單調(diào)性可知,f(x)在x=-1處取得極大值f(-1)=1,在x=1處取得極小值f(1)=-3.
因為直線y=m與函數(shù)y=f(x)的圖象有三個不同的交點,
結(jié)合如圖所示f(x)的圖象可知:
m的取值范圍是(-3,1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱
中,底面
是矩形,且
,
,
,若
為
的中點,且
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)線段
上是否存在一點
,使得二面角
的大小為
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)
為何值時,
.①有且僅有一個零點;②有兩個零點且均比-1大;
(2)若函數(shù)
有4個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
![]()
(1)若
=6
,求k的值;
(2)求四邊形AEBF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)工商局、消費者協(xié)會在
月
號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務(wù)活動,著力提升消費者維權(quán)意識.組織方從參加活動的群眾中隨機(jī)抽取
名群眾,按他們的年齡分組:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示.
![]()
(Ⅰ)若電視臺記者要從抽取的群眾中選
人進(jìn)行采訪,求被采訪人恰好在第
組或第
組的概率;
(Ⅱ)已知第
組群眾中男性有
人,組織方要從第
組中隨機(jī)抽取
名群眾組成維權(quán)志愿者服務(wù)隊,求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=
的a的值,并求此時函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(Ⅰ)求{an}的通項公式an與前n項和公式Sn;
(Ⅱ)令bn=
(k<0),若{bn}是等差數(shù)列,求數(shù)列{
}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用長為
,寬為
的長方形鐵皮做一個無蓋的容器.先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn)
,再焊接而成(如圖).問該容器的高為多少時,容器的容積最大?最大容積是多少?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
),
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時,
的兩個極值點為
,
(
).
①證明:
;
②若
,
恰為
的零點,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com