欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知指數(shù)函數(shù)y=ax的圖象經(jīng)過點(diǎn)(2,3),則函數(shù)的解析式是y=$\sqrt{3}$x,定義域是R,值域是(0,+∞),在定義域內(nèi)是增函數(shù)(用“增”“減”填空)

分析 由題意可得a2=3,從而求a,再確定函數(shù)的性質(zhì)即可.

解答 解:∵指數(shù)函數(shù)y=ax的圖象經(jīng)過點(diǎn)(2,3),
∴a2=3,∴a=$\sqrt{3}$;
故函數(shù)的解析式是y=$\sqrt{3}$x,
故其定義域?yàn)镽,
其值域?yàn)椋?,+∞);
其在定義域內(nèi)是增函數(shù);
故答案為:y=$\sqrt{3}$x,R,(0,+∞),增.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì)的判斷與應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)A是橢圓的一個(gè)短軸頂點(diǎn),B,C均為橢圓上的點(diǎn),△ABC為以A為直角頂點(diǎn)的等腰三角形,這樣的三角形有三個(gè),則橢圓離心率的范圍($\frac{\sqrt{6}}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知sinα+sin(α+β)+cos(α+β)=$\sqrt{3}$,β∈[$\frac{π}{4}$,π],求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某種型號(hào)的電子管的壽命X(以小時(shí)計(jì))具有以下概率密度;
f(x)=$\left\{\begin{array}{l}{1000/{x}^{2}}&{x>1000}\\{0}&{其它}\end{array}\right.$,現(xiàn)有一大批此種管子(設(shè)各電子管損壞與否相互獨(dú)立),任取5只,問其中至少有2只壽命大于1500小時(shí)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在區(qū)間[0,a]上任意投擲一個(gè)質(zhì)點(diǎn),以X表示這個(gè)質(zhì)點(diǎn)的坐標(biāo),設(shè)這個(gè)質(zhì)點(diǎn)落在[0,a]中任意小區(qū)間內(nèi)的概率與這個(gè)小區(qū)間的長(zhǎng)度成正比,試求X的分布函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等比數(shù)列1,$\sqrt{3}$,3,…中,27$\sqrt{3}$是( 。
A.第6項(xiàng)B.第7項(xiàng)C.第8項(xiàng)D.第9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x=$\frac{2π}{3}$和x=$\frac{7π}{6}$是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<2π)的兩條相鄰的對(duì)稱軸,且函數(shù)f(x)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上單調(diào)遞減,則φ的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$后函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)D是△ABC中BC邊上的中點(diǎn),過D作一條直線分別交直線AB、AC于點(diǎn)M、N,設(shè)$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,且m>0,n>0.
(1)分別用向量$\overrightarrow{a}$、$\overrightarrow$表示向量$\overrightarrow{MD}$與$\overrightarrow{MN}$;
(2)試探究:$\frac{1}{m}$+$\frac{1}{n}$是否為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案