分析 (1)運用正弦定理,結(jié)合同角的正切公式,即可得到B;
(2)由$\overrightarrow{BA}•\overrightarrow{BC}$=-2,得到ac=4,再結(jié)合余弦定理求出b的最小值,面積確定,從而得到其高的最大值.
解答 解:(1)由bsinA═-$\sqrt{3}$acosB,
即由正弦定理得,sinBsinA=-$\sqrt{3}$sinAcosB,
則tanB=$-\sqrt{3}$,
由B∈(0,π),即有B=$\frac{2π}{3}$;
(2)由$\overrightarrow{BA}•\overrightarrow{BC}$=-2,得ac•cosB=ac$•cos\frac{2π}{3}$=-2,
∴ac=4,則${S}_{△ABC}=\frac{1}{2}ac•sinB=\frac{1}{2}×4×\frac{\sqrt{3}}{2}=\sqrt{3}$,
$b=\sqrt{{a}^{2}+{c}^{2}-2ac•cosB}$=$\sqrt{{a}^{2}+{c}^{2}+ac}≥\sqrt{3ac}=2\sqrt{3}$.
∴AC邊上的高BD的最大值為$\frac{\sqrt{3}}{2\sqrt{3}}=\frac{1}{2}$.
點評 本題考查正弦定理和余弦定理的運用,考查三角形的面積公式及應(yīng)用,以及同角公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 6 | B. | 12 | C. | 18 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{3}{5}$ | B. | -$\frac{7}{25}$ | C. | $\frac{7}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ($\frac{π}{2}$,$\frac{5π}{6}$] | B. | [$\frac{5π}{2}$,π) | C. | [$\frac{2π}{3}$,π) | D. | [0,$\frac{π}{2}$)∪[$\frac{5π}{6}$,π) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com