欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.若函數(shù)y=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在一個(gè)周期內(nèi)的圖象如圖所示,且在$y軸上的截距為\sqrt{2}$,M,N分別是這段圖象的最高點(diǎn)和最低點(diǎn),
則$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影為( 。
A.$\frac{{\sqrt{29}}}{29}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{\sqrt{29}}}{29}$D.$-\frac{{\sqrt{5}}}{5}$

分析 由周期求出ω,由五點(diǎn)法作圖求出φ的值,由函數(shù)在y軸上的截距求出A,可得函數(shù)的解析式,再利用兩個(gè)向量數(shù)量積的定義,求出$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影.

解答 解:根據(jù)函數(shù)y=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在一個(gè)周期內(nèi)的圖象,
可得$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=3-1,∴ω=$\frac{π}{4}$.
再根據(jù)五點(diǎn)法作圖可得$\frac{π}{4}$•1+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,函數(shù)的解析式為y=Asin($\frac{π}{4}$x+$\frac{π}{4}$).
由于該函數(shù)在$y軸上的截距為\sqrt{2}$,∴Asin$\frac{π}{4}$=$\sqrt{2}$,∴A=2,故函數(shù)的解析式為y=2sin($\frac{π}{4}$x+$\frac{π}{4}$).
∴M(1,2)、N(5,-2),∴$\overrightarrow{OM}$$•\overrightarrow{ON}$=5-4=1.
設(shè)$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影為a,∵$\overrightarrow{OM}$$•\overrightarrow{ON}$=1=a•|$\overrightarrow{OM}$|=$\sqrt{5}$a,∴a=$\frac{\sqrt{5}}{5}$,
故選:B.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值,由函數(shù)在y軸上的截距求出A,兩個(gè)向量數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若n∈N*,且n≤19,則(20-n)(21-n)…(100-n)等于( 。
A.$A_{100-n}^{80}$B.$A_{100-n}^{20-n}$C.$A_{100-n}^{81}$D.$A_{20-n}^{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線$\left\{\begin{array}{l}{x=4t}\\{y=-3+3t}\end{array}\right.$(t為參數(shù))與圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù))的位置關(guān)系是相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC 中,若$\overrightarrow{AC}•\overrightarrow{BC}-\overrightarrow{AB}•\overrightarrow{AC}$=0,則△ABC 是( 。
A.直角三角形B.等腰三角形C.等邊三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若扇形的半徑為6cm,所對的弧長為2πcm,則這個(gè)扇形的面積是( 。
A.12πcm2B.6 cm2C.6πcm2D.4 cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線2x+11y+16=0關(guān)于P(0,1)對稱的直線方程是( 。
A.2x+11y+38=0B.2x+11y-38=0C.2x-11y-38=0D.2x-11y+16=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,4},B={x|a+x=1},若A∩B=B,則實(shí)數(shù)a組成的集合是(  )
A.{0}B.{0,1}C.{0,-3}D.{0,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.點(diǎn)P(x0,y0)在橢圓C:$\frac{x^2}{2}+{y^2}$=1上,且x0=$\sqrt{2}cosβ,{y_0}$=sinβ,0<β<$\frac{π}{2}$.直線l2與直線l1:$\frac{{{x_0}x}}{2}+{y_0}$y=1垂直,O為坐標(biāo)原點(diǎn),直線OP的傾斜角為α,直線l2的傾斜角為γ.
(1)證明:點(diǎn)P是橢圓C:$\frac{x^2}{2}+{y^2}$=1與直線l1的唯一公共點(diǎn);
(2)證明:tanα,tanβ,tanγ構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(B組題)關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,最著名的屬普豐實(shí)驗(yàn)和查理實(shí)驗(yàn).受其啟發(fā),小彤同學(xué)設(shè)計(jì)了一個(gè)算法框圖來估計(jì)π的值(如圖).若電腦輸出的j的值為43,那么可以估計(jì)π的值約為(  )
A.$\frac{79}{25}$B.$\frac{47}{15}$C.$\frac{157}{50}$D.$\frac{236}{75}$

查看答案和解析>>

同步練習(xí)冊答案