欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)P(1,$\frac{3}{2}$)在橢圓上;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)P(x,y)在橢圓C上運(yùn)動(dòng)時(shí),點(diǎn)Q($\frac{\sqrt{3}x}{3}$,$\frac{2y}{3}$)在曲線S上運(yùn)動(dòng),求曲線S的軌跡方程,并指出該曲線是什么圖形;
(3)過(guò)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}-\frac{5}{3}}$=1上異于其頂點(diǎn)的任意一點(diǎn)Q作曲線S的兩條切線,切點(diǎn)分別為M,N(M,N不在坐標(biāo)軸上),若直線MN在x軸,y軸的截距分別為m,n,試問(wèn):$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

分析 (1)由焦點(diǎn)坐標(biāo)確定出c的值,根據(jù)橢圓的性質(zhì)列出a與b的方程,再將P點(diǎn)坐標(biāo)代入橢圓方程列出關(guān)于a與b的方程,聯(lián)立求出a與b的值,確定出橢圓方程即可.
(2)由已知得$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,Q($\frac{2\sqrt{3}}{3}co{s}^{2}θ$,$\frac{2\sqrt{3}}{3}sinθ$),(0≤θ<2π),由此能求出曲線S的軌跡方程,并能指出該曲線是什么圖形.
(3)由題意:確定出C1的方程,設(shè)點(diǎn)P(x1,y1),M(x2,y2),N(x3,y3),根據(jù)M,N不在坐標(biāo)軸上,得到直線PM與直線OM斜率乘積為-1,確定出直線PM的方程,同理可得直線PN的方程,進(jìn)而確定出直線MN方程,求出直線MN與x軸,y軸截距m與n,即可確定出所求式子的值為定值.

解答 解:(1)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點(diǎn)為F(1,0),且點(diǎn)P(1,$\frac{3}{2}$)在橢圓C上;
∴$\left\{\begin{array}{l}{c=1}\\{\frac{1}{{a}^{2}}+\frac{9}{4^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)∵點(diǎn)P(x,y)在橢圓C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$上運(yùn)動(dòng)時(shí),點(diǎn)Q($\frac{\sqrt{3}x}{3}$,$\frac{2y}{3}$)在曲線S上運(yùn)動(dòng),
∴$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,∴Q($\frac{2\sqrt{3}}{3}co{s}^{2}θ$,$\frac{2\sqrt{3}}{3}sinθ$),(0≤θ<2π),
∴曲線S的軌跡方程為${x}^{2}+{y}^{2}=\frac{4}{3}$,
曲線S是以原點(diǎn)為圓心,以$\frac{2\sqrt{3}}{3}$為半徑的圓.
(3)由題意:C1:$\frac{{x}^{2}}{4}$+$\frac{3{y}^{2}}{4}$=1,
設(shè)點(diǎn)Q(x1,y1),M(x2,y2),N(x3,y3),
∵M(jìn),N不在坐標(biāo)軸上,∴kPM=-$\frac{1}{{k}_{OM}}$=-$\frac{{x}_{2}}{{y}_{2}}$,
∴直線QM的方程為y-y2=-$\frac{{x}_{2}}{{y}_{2}}$(x-x2),
化簡(jiǎn)得:x2x+y2y=$\frac{4}{3}$,①,
同理可得直線QN的方程為x3x+y3y=$\frac{4}{3}$,②,
把Q點(diǎn)的坐標(biāo)代入①、②得$\left\{\begin{array}{l}{{x}_{2}{x}_{1}+{y}_{2}{y}_{1}=\frac{4}{3}}\\{{x}_{3}{x}_{1}+{y}_{3}{y}_{1}=\frac{4}{3}}\end{array}\right.$,
∴直線MN的方程為x1x+y1y=$\frac{4}{3}$,
令y=0,得m=$\frac{4}{3{x}_{1}}$,令x=0得n=$\frac{4}{3{y}_{1}}$,
∴x1=$\frac{4}{3m}$,y1=$\frac{4}{3n}$,
又點(diǎn)Q在橢圓C1上,
∴($\frac{4}{3m}$)2+3($\frac{4}{3n}$)2=4,
則$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$=$\frac{3}{4}$為定值.

點(diǎn)評(píng) 本題考查了直線與圓錐曲線的綜合問(wèn)題,橢圓的標(biāo)準(zhǔn)方程,韋達(dá)定理,以及橢圓的簡(jiǎn)單性質(zhì),熟練掌握橢圓的簡(jiǎn)單性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x2-x|+|x2+$\frac{1}{x}$|(x≠0).
(1)求證:f(x)≥2;
(2)若?x∈[1,3],使f(x)≥$\frac{ax+1}{x}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.有一游戲規(guī)則是:拋擲一骰子,若擲出1點(diǎn)、2點(diǎn)、3點(diǎn),則得1分,若是擲出4點(diǎn)、5點(diǎn),則得2分,若擲出6點(diǎn),則得3分,
(1)寫(xiě)出學(xué)生A拋擲一次所得分?jǐn)?shù)的期望;
(2)學(xué)生A與學(xué)生B各擲2次,所得分?jǐn)?shù)分別x,y,求|x-y|≥1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.(文)設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{y≥4-x}\\{y≥x-1}\end{array}\right.$,則z=3x+y的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A.30B.120C.360D.720

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點(diǎn)為F(1,0),且點(diǎn)P(1,$\frac{3}{2}$)在橢圓C上;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}-\frac{5}{3}}$=1上異于其頂點(diǎn)的任意一點(diǎn)Q作圓O:x2+y2=$\frac{4}{3}$的兩條切線,切點(diǎn)分別為M、N(M、N不在坐標(biāo)軸上),若直線MN在x軸,y軸上的截距分別為m、n,證明:$\frac{1}{3{m}^{2}}+\frac{1}{{n}^{2}}$為定值;
(3)若P1、P2是橢圓C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{3{y}^{2}}{^{2}}=1$上不同兩點(diǎn),P1P2⊥x軸,圓E過(guò)P1、P2,且橢圓C2上任意一點(diǎn)都不在圓E內(nèi),則稱(chēng)圓E為該橢圓的一個(gè)內(nèi)切圓,試問(wèn):橢圓C2是否存在過(guò)焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=sin(ωx+φ)(x∈R,ω>0,-π<φ<π)的部分圖象如圖,則該函數(shù)的解析式為y=sin($\frac{π}{4}$x$+\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C:(x-a)2+(y-b)2=r2,寫(xiě)出求圓上的點(diǎn)到圓外一點(diǎn)P0的距離最大值的算法,并畫(huà)出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)cos2014°=m,則sin2014°=( 。
A.$\sqrt{1-{m}^{2}}$B.-$\sqrt{{m}^{2}-1}$C.$±\sqrt{1-{m}^{2}}$D.-$\sqrt{1-{m}^{2}}$

查看答案和解析>>