欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知圓C的圓心在直線y=x+1上,半徑為$\sqrt{2}$,且圓C經(jīng)過點P(5,4)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求過點A(1,0)且與圓C相切的切線方程.

分析 (1)設(shè)圓C的標(biāo)準(zhǔn)方程為:(x-a)2+(y-b)2=2,由于點C在直線y=x+1上,則b=a+1;圓C經(jīng)過點P(5,4),可得(5-a)2+(4-b)2=2,聯(lián)立解出即可得出;
(2)利用直線與圓相切的充要條件即可得出.

解答 解:(1)設(shè)圓C的標(biāo)準(zhǔn)方程為:(x-a)2+(y-b)2=2,
∵點C在直線y=x+1上,則b=a+1,
∵圓C經(jīng)過點P(5,4),∴(5-a)2+(4-b)2=2,
解得:a=4,b=5.
∴圓C:(x-4)2+(y-5)2=2.
(2)設(shè)直線l斜率為k,則直線l方程為y=k(x-1),即kx-y-k=0.
由題意知,圓心(4,5)到已知直線l的距離等于半徑$\sqrt{2}$,
即$\frac{|4k-5-k|}{\sqrt{1+{k}^{2}}}=\sqrt{2}$,解得k=1或k=$\frac{23}{7}$.
所求切線方程是y=x-1,或$\frac{23}{7}$x-$\frac{23}{7}$.

點評 本題考查了圓的標(biāo)準(zhǔn)方程及其應(yīng)用、直線與圓相切的充要條件、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x2-4x-lnx+4的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.0∈N,$\sqrt{5}$∉Q,$\sqrt{16}$∈N*,$3\frac{1}{2}$∉ Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}的前n項和為${S_n}={n^2}$,某三角形三邊之比為a2:a3:a4,則該三角形最大角為( 。
A.60°B.84°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線y2=4x的焦點為F,準(zhǔn)線與x軸的交點為P,過P任作一條直線與拋物線交于A、B兩點,O為坐標(biāo)原點.
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值
(2)設(shè)C為拋物線上位于第一象限的任意一點,過C作直線l與拋物線相切,求證:F關(guān)于直線l的對稱點在拋物線的準(zhǔn)線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知動圓M過定點A(-3,0),并且內(nèi)切于定圓B:(x-3)2+y2=64,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知多項式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,則a2=(  )
A.32B.42C.46D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|3≤x≤6,B={y|y=2x,2≤x<3}.
(1)分別求A∩B;(CRB)∪A
(2)已知C={x|a≤x≤a+1},若C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知角α的終邊在射線y=-$\sqrt{3}x({x<0})$上,那么sinα等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案