【題目】如圖,在四棱錐
中,
為正三角形,
為線段
的中點(diǎn).
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)若
,求直線
與平面
所成的角的正弦值.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ)
.
【解析】
(Ⅰ)取
的中點(diǎn)
,根據(jù)中位線可得
,在根據(jù)垂直關(guān)系可證得
;根據(jù)面面平行的判定定理可證得平面![]()
;利用面面平行性質(zhì)定理證得結(jié)論;(Ⅱ)根據(jù)線面垂直判定定理可證得
平面
,從而可以以
為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,利用線面角的向量求法可求得結(jié)果.
(Ⅰ)證明:取
的中點(diǎn)
,連接
,如圖所示:
![]()
分別為
中點(diǎn) ![]()
為等邊三角形 ![]()
又
![]()
又
平面
平面![]()
又
平面
平面![]()
(Ⅱ)
為正三角形,
,![]()
,![]()
連接
,
,則
為
的中點(diǎn)
,![]()
又
,
![]()
又
平面![]()
以
為坐標(biāo)原點(diǎn),
所在直線分別為
,
軸,建立如圖所示空間直角坐標(biāo)系
![]()
則
,
,
,
,![]()
,
,![]()
設(shè)平面
的法向量為![]()
,令
,則
,
![]()
設(shè)直線
與平面
所成角為![]()
則直線
與平面
所成角的正弦值為:![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,且
.
(1)求
的值;
(2)畫(huà)出
圖像,并寫(xiě)出單調(diào)遞增區(qū)間(不需要說(shuō)明理由);
(3)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量
(單位:千克)與銷售價(jià)格
(單位:元/千克)滿足
,其中
,
為常數(shù).已知銷售價(jià)格為7元/千克時(shí),每日可售出該商品11千克.
(1)求
的值;
(2)若該商品成本為5元/千克,試確定銷售價(jià)格
值,使商場(chǎng)每日銷售該商品所獲利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,點(diǎn)
在平面
內(nèi)運(yùn)動(dòng),使得二面角
的平面角與二面角
的平面角互余,則點(diǎn)
的軌跡是( )
![]()
A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有兩臺(tái)不同機(jī)器A和B生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取二十件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:
![]()
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記
為來(lái)自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫(xiě)出
的分布列,并求
的數(shù)學(xué)期望;
(2)完成下列
列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上(含良好) | |||
合格 | |||
合計(jì) |
(3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元/件,A機(jī)器每生產(chǎn)10萬(wàn)件的成本為20萬(wàn)元,B機(jī)器每生產(chǎn)10萬(wàn)件的成本為30萬(wàn)元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬(wàn)件產(chǎn)品,若收益之差達(dá)到5萬(wàn)元以上,則淘汰收益低的機(jī)器,若收益之差不超過(guò)5萬(wàn)元,則仍然保留原來(lái)的兩臺(tái)機(jī)器.你認(rèn)為該工廠會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器嗎?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過(guò)卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下
列聯(lián)表,并判斷是否有
的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?
比較了解 | 不太了解 | 合計(jì) | |
理科生 | |||
文科生 | |||
合計(jì) |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機(jī)抽取3人,用
表示這3人中文科生的人數(shù),求
的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,第24屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開(kāi)幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開(kāi)幕式情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
(Ⅰ)根據(jù)上表說(shuō)明,能否有
的把握認(rèn)為,收看開(kāi)幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問(wèn)卷調(diào)查且收看了開(kāi)幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).
(ⅰ)問(wèn)男、女學(xué)生各選取了多少人?
(ⅱ)若從這12人中隨機(jī)選取3人到校廣播站開(kāi)展冬奧會(huì)及冰雪項(xiàng)目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為
,寫(xiě)出
的分布列,并求
.
收看 | 沒(méi)收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的長(zhǎng)軸長(zhǎng)為
,且橢圓
與圓
:
的公共弦長(zhǎng)為
.
(1)求橢圓
的方程.
(2)經(jīng)過(guò)原點(diǎn)作直線
(不與坐標(biāo)軸重合)交橢圓于
,
兩點(diǎn),
軸于點(diǎn)
,點(diǎn)
在橢圓
上,且
,求證:
,
,
三點(diǎn)共線..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1所示,在邊長(zhǎng)為12的正方形
,中,
,且
,
分別交
于點(diǎn)
,將該正方形沿
,折疊,使得
與
重合,構(gòu)成如圖2 所示的三棱柱
,在該三棱柱底邊
上有一點(diǎn)
,滿足
; 請(qǐng)?jiān)趫D2 中解決下列問(wèn)題:
![]()
(I)求證:當(dāng)
時(shí),
//平面
;
(Ⅱ)若直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com