【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量
(單位:千克)與銷售價格
(單位:元/千克)滿足
,其中
,
為常數(shù).已知銷售價格為7元/千克時,每日可售出該商品11千克.
(1)求
的值;
(2)若該商品成本為5元/千克,試確定銷售價格
值,使商場每日銷售該商品所獲利潤最大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=x2﹣x.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)
(x≠0),求證:函數(shù)g(x)在(0,+∞)單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈師大附中高三學(xué)年統(tǒng)計甲、乙兩個班級一模數(shù)學(xué)分?jǐn)?shù)(滿分150分),每個班級20名同學(xué),現(xiàn)有甲、乙兩班本次考試數(shù)學(xué)分?jǐn)?shù)如下列莖葉圖所示:
![]()
(I)根據(jù)基葉圖求甲、乙兩班同學(xué)數(shù)學(xué)分?jǐn)?shù)的中位數(shù),并將乙班同學(xué)的分?jǐn)?shù)的頻率分布直方圖填充完整;
![]()
(Ⅱ)根據(jù)基葉圖比較在一?荚囍,甲、乙兩班同學(xué)數(shù)學(xué)分?jǐn)?shù)的平均水平和分?jǐn)?shù)的分散程度(不要求計算出具體值,給出結(jié)論即可)
(Ⅲ)若規(guī)定分?jǐn)?shù)在
的成績?yōu)榱己,分(jǐn)?shù)在
的成績?yōu)閮?yōu)秀,現(xiàn)從甲、乙兩班成績?yōu)閮?yōu)秀的同學(xué)中,按照各班成績?yōu)閮?yōu)秀的同學(xué)人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選出12位同學(xué)參加數(shù)學(xué)提優(yōu)培訓(xùn),求這12位同學(xué)中恰含甲、乙兩班所有140分以上的同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
與直線
交于
不同兩點分別過點
、點
作拋物線
的切線,所得的兩條切線相交于點
.
(Ⅰ)求證
為定值:
(Ⅱ)求
的面積的最小值及此時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
,且
).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在
上的最大值.
【答案】(Ⅰ)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時,
;當(dāng)
時,
.
【解析】【試題分析】(I)利用
的二階導(dǎo)數(shù)來研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對
分類討論求得函數(shù)在
不同取值時的最大值.
【試題解析】
(Ⅰ)
,
設(shè)
,則
.
∵
,
,∴
在
上單調(diào)遞增,
從而得
在
上單調(diào)遞增,又∵
,
∴當(dāng)
時,
,當(dāng)
時,
,
因此,
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知
.
∵
,
,
∴
.
設(shè)
,
則
.
∵當(dāng)
時,
,∴
在
上單調(diào)遞增.
又∵
,∴當(dāng)
時,
;當(dāng)
時,
.
①當(dāng)
時,
,即
,這時,
;
②當(dāng)
時,
,即
,這時,
.
綜上,
在
上的最大值為:當(dāng)
時,
;
當(dāng)
時,
.
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與
軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,圓
的普通方程為
. 在以坐標(biāo)原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓
的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線
與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間幾何體
中,平面
平面
,
與
都是邊長為2的等邊三角形,
,點
在平面
上的射影在
的平分線上,已知
和平面
所成角為
.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com