欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.函數(shù)y=lg(2sinx-$\sqrt{2}$)-$\sqrt{1-2cosx}$的定義域?yàn)閇$\frac{π}{6}$+2kπ,2kπ+$\frac{3π}{4}$),k∈Z.

分析 根據(jù)函數(shù)成立的條件建立不等式即可得到結(jié)論.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{2sinx-\sqrt{2}>0}\\{1-2cosx≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{sinx>\frac{\sqrt{2}}{2}}\\{cosx≤\frac{1}{2}}\end{array}\right.$,即$\frac{π}{6}$+2kπ≤x<2kπ+$\frac{3π}{4}$,k∈Z,
故函數(shù)的定義域?yàn)閇$\frac{π}{6}$+2kπ,2kπ+$\frac{3π}{4}$),k∈Z.
故答案為:[$\frac{π}{6}$+2kπ,2kπ+$\frac{3π}{4}$),k∈Z.

點(diǎn)評(píng) 本題主要考查函數(shù)定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3-x2-x+a.
(1)求f(x)的極值;
(2)當(dāng)a在什么范圍內(nèi)取值時(shí),曲線y=f(x)與x軸有三個(gè)交點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C1經(jīng)過兩點(diǎn)E(-2,0)F(-4,2),且圓心C1在直線l:2x-y+8=0上.
(Ⅰ)求圓C1的方程;
(Ⅱ)求過點(diǎn)G(-2,-4)且與圓C1相切的直線方程;
(Ⅲ)設(shè)圓C1與x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a,b∈R,當(dāng)x>0時(shí),不等式ax+b≥lnx,則a+b的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算下列各數(shù):
(1)${A}_{5}^{2}$
(2)${A}_{6}^{6}$
(3)$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$
(4)$\frac{(2n)!}{{A}_{n}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.?dāng)?shù)列{an}中,a1=3,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{2}{3}$,則an=$\frac{3}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ln(2+3x)-$\frac{3}{2}$x2,x∈[$\frac{1}{6}$,$\frac{1}{3}$]時(shí),|a-lnx|+ln[f′(x)+3x]>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求證:C${\;}_{n}^{0}$${C}_{n}^{1}$+${{C}_{n}^{1}}_{\;}^{\;}$${C}_{n}^{2}$+…+${C}_{n}^{n-1}$${C}_{n}^{n}$=$\frac{(2n)!}{(n-1)!(n+1)!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,E為正方體的棱AA1中點(diǎn),F(xiàn)為棱AB上一點(diǎn),且∠C1EF=90°,則|AF|:|FB|=1:3.

查看答案和解析>>

同步練習(xí)冊(cè)答案