分析 (Ⅰ)求出BE,AE=BE=$\sqrt{3}$,DE=CE=1,∠AED=150°,利用余弦定理求線段AD的長;
(Ⅱ)比較∠ADC和∠ABC的大小,轉化為比較∠ADE與∠EBC的大。
解答 解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=$\sqrt{3}$,
在△ADE中,AE=BE=$\sqrt{3}$,DE=CE=1,∠AED=150°,
由余弦定理可得AD=$\sqrt{3+1-2×\sqrt{3}×1×(-\frac{\sqrt{3}}{2})}$=$\sqrt{7}$;
(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,
∴問題轉化為比較∠ADE與∠EBC的大。
在△ADE中,由正弦定理可得$\frac{sin∠ADE}{AE}=\frac{sin∠AED}{AD}$,
∴sin∠ADE=$\frac{\frac{1}{2}×\sqrt{3}}{\sqrt{7}}$<$\frac{1}{2}$=sin30°,
∴∠ADE<30°
∴∠ADC<∠ABC.
點評 本題考查余弦定理的運用,考查正弦定理,考查學生分析解決問題的能力,正確運用正弦、余弦定理是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ($\frac{2}{7},-3$) | B. | (-2,-3) | C. | (0,$\frac{2}{7}$) | D. | (-2,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充分必要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a?α,b⊥β,α∥β | B. | a⊥α,b⊥β,α∥β | C. | a∥α,b∥β,α⊥β | D. | a?α,b∥β,α⊥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2 | B. | 0 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com