【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠
名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)量的區(qū)間分別為:
),其中產(chǎn)量在
的工人有6名.
(1)求這一天產(chǎn)量不小于25的工人數(shù);
(2)該廠規(guī)定從產(chǎn)量低于20件的工人中選取2名工人進(jìn)行培訓(xùn),求這兩名工人不在同一分組的概率.
![]()
【答案】(1)8;(2)
.
【解析】
試題(1)根據(jù)頻率分布直方圖得到產(chǎn)量為
的頻率,進(jìn)而求出抽查的總?cè)藬?shù),得出這一天產(chǎn)量不小于25的工人人數(shù);(2)根據(jù)頻率分布直方圖,分別求出產(chǎn)量在
和
的人數(shù),運(yùn)用列舉法即可求出這2名工人不在同一分組的概率.
試題解析:(1)由題意得產(chǎn)量為
的頻率為0.06
=0.3,所以
所以這一天產(chǎn)量不小于25的工人數(shù)為
有題意得,產(chǎn)量在
的工人數(shù)為
,記他們分別是
產(chǎn)量在
的工人數(shù)為
,記他們分別是
,則從產(chǎn)量低于20件的工人中選取2位工人的結(jié)果為:
,
![]()
共有15種不同結(jié)果
其中2位工人不在同一組的為
有8種
所以所求概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).
(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件
,求事件
發(fā)生的概率;
(2)設(shè)
為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年提出:三角形的外心、重心位于同一直線上,這條直線被后人稱之為三角形的歐拉線,若
的頂點(diǎn)
,
,且
的歐拉線的方程為
.
(1)求
外心
(外接圓圓心)的坐標(biāo);
(2)求頂點(diǎn)
的坐標(biāo).
(注:如果
三個(gè)頂點(diǎn)坐標(biāo)分別為
,
,
,則
重心的坐標(biāo)是
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
且
是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若
,試判斷函數(shù)單調(diào)性并求使不等式
恒成立的t的取值范圍;
若
,且
在
上的最小值為
,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從柳州鐵一中高二男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位:
)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
![]()
(1)估計(jì)該校的100名同學(xué)體重的平均值和方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)若要從體重在
內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再?gòu)倪@5人中隨機(jī)抽取2人,求被抽取的兩位同學(xué)來(lái)自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)X~N(μ1,
),Y~N(μ2,
),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
![]()
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
在
處的切線與直線
平行,求實(shí)數(shù)
的值;
(2)試討論函數(shù)
在區(qū)間
上最大值;
(3)若
時(shí),函數(shù)
恰有兩個(gè)零點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)若函數(shù)f(x)在
處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式
在
上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com