【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f(
)|對x∈R恒成立,且f(
)>f(π),則f(x)的單調(diào)遞增區(qū)間是( )
A.[kπ﹣
,kπ+
](k∈Z)
B.[kπ,kπ+
](k∈Z)
C.[kπ+
,kπ+
](k∈Z)
D.[kπ﹣
,kπ](k∈Z)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課 | 不喜歡數(shù)學(xué)課 | 合計(jì) | |
男 | 30 | 60 | 90 |
女 | 20 | 90 | 110 |
合計(jì) | 50 | 150 | 200 |
經(jīng)計(jì)算K2≈6.06,根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有(填百分?jǐn)?shù))的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.![]()
(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有60m長的鋼材,要制作如圖所示的窗框: ![]()
(1)求窗框面積y與窗框?qū)抶的函數(shù)關(guān)系;
(2)當(dāng)窗框?qū)挒槎嗌倜讜r(shí),面積y有最大值?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知sinAsinB=sinCtanC.
(1)求
的值:
(2)若a=
c,且△ABC的面積為4,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且a=2,2cos2
+sinA=
.
(1)若滿足條件的△ABC有且只有一個(gè),求b的取值范圍;
(2)當(dāng)△ABC的周長取最大值時(shí),求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為
,則BD1與面A1BD所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(1,2),過點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是( )
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,
,
,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O. ![]()
(1)求證:O是AD中點(diǎn);
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com