分析 通過an=22n-1可知公比q=4,進(jìn)而可知數(shù)列{an}是以2為首項、4為公比的等比數(shù)列,利用等比數(shù)列的求和公式計算即得結(jié)論.
解答 解:依題意,公比q=$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{2}^{2(n+1)-1}}{{2}^{2n-1}}$=4,
則數(shù)列{an}是以2為首項、4為公比的等比數(shù)列,
于是Sn=$\frac{2(1-{4}^{n})}{1-4}$=$\frac{{-2+2}^{2n+1}}{3}$.
點評 本題考查數(shù)列的求和,注意解題方法的積累,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{e^2}{4}$,+∞) | B. | ($\frac{{{e^{\;}}}}{2}$,+∞) | C. | (1,$\frac{e^2}{4}$) | D. | (1,$\frac{{{e^{\;}}}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 函數(shù)f(x)一定存在極大值和極小值 | |
| B. | 若函數(shù)f(x)在(-∞,x1),(x2,+∞)上是增函數(shù),則x2-x1≥$\frac{2\sqrt{3}}{3}$ | |
| C. | 函數(shù)f(x)的圖象是中心對稱圖形 | |
| D. | 函數(shù)f(x)的圖象在點(x0,f(x0))(x0∈R)處的切線與f(x)的圖象必有兩個不同的公共點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com