欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知雙曲線 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F,雙曲線C與過原點(diǎn)的直線相交于A、B兩點(diǎn),連接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,則該雙曲線的離心率為5.

分析 在△AFB中,由余弦定理可得|BF|2=|AB|2+|AF|2-2|AB|•|AF|cos∠BAF,即可得到|AB|,由勾股定理的逆定理,可得∠ABF=90°,設(shè)F′為雙曲線的右焦點(diǎn),連接BF′,AF′.根據(jù)對(duì)稱性可得四邊形AFBF′是矩形.即可得到a,c,進(jìn)而求得離心率.

解答 解:在△AFB中,由余弦定理可得
|BF|2=|AB|2+|AF|2-2|AB|•|AF|cos∠BAF,
即有64=|AB|2+36-12|AB|•
化為|AB|2-$\frac{36}{5}$|AB|-28=0,
解得|AB|=10.
由勾股定理的逆定理,可得∠ABF=90°,
設(shè)F'為雙曲線的右焦點(diǎn),連接BF′,AF′.
根據(jù)對(duì)稱性可得四邊形AFBF′是矩形.
結(jié)合矩形性質(zhì)可知,2c=10,利用雙曲線定義,2a=8-6=2,
所以離心率e=$\frac{c}{a}$=5.
故答案為:5.

點(diǎn)評(píng) 熟練掌握余弦定理、雙曲線的定義、對(duì)稱性、離心率、矩形的性質(zhì)等基礎(chǔ)知識(shí)是解題的關(guān)鍵,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A是拋物線C:x2=2py(p>0)上一點(diǎn),O為坐標(biāo)原點(diǎn),若A,B是以點(diǎn)M(0,10)為圓心,|OA|的長(zhǎng)為半徑的圓與拋物線C的兩個(gè)公共點(diǎn),且△ABO為等邊三角形,則p的值是( 。
A.$\frac{5}{2}$B.$\frac{5}{3}$C.$\frac{5}{6}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.指出下列變量中,哪些是隨機(jī)變量,哪些不是隨機(jī)變量,并說明理由.
①任意擲一枚均勻硬幣5次,出現(xiàn)正面向上的次數(shù);
②投一顆質(zhì)地均勻的散子出現(xiàn)的點(diǎn)數(shù)(最上面的數(shù)字);
③某個(gè)人的屬相隨年齡的變化;
④在標(biāo)準(zhǔn)狀況下,水在0℃時(shí)結(jié)冰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.等差數(shù)列{an}中,a1=4,a3=3,則當(dāng)n取8或9時(shí),Sn最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.雙曲線a2x2-$\frac{a}{3}$y2=1的一個(gè)焦點(diǎn)是(-2,0),則a等于(  )
A.-$\frac{1}{4}$B.1C.-$\frac{1}{4}$或1D.$\frac{1}{4}$或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{5}{4}$,焦點(diǎn)到漸近線的距離為3,則C的實(shí)軸長(zhǎng)等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)求VB-FADE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.給出下列兩個(gè)集合A,B及A→B的對(duì)應(yīng)f:
①A={-1,0,1},B={-1,0,1},f:A中的數(shù)的平方;
②A={0,1},B={-1,0,1},f:A中的數(shù)的開方;
③A=Z,B=Q,f:A中的數(shù)的倒數(shù);
④A=R,B={正實(shí)數(shù)},f:A中的數(shù)取絕對(duì)值;
⑤A={1,2,3,4},B={2,4,6,8,10},f:n=2m,其中n∈A,m∈B;
其中是A到B的函數(shù)有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的右焦點(diǎn),點(diǎn)P在雙曲線右支上,△POF(O為坐標(biāo)原點(diǎn))滿足OF=OP=5,$P{F_{\;}}=2\sqrt{5}$,則雙曲線的離心率為 ( 。
A.$\sqrt{3}+1$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案