欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知$\left\{\begin{array}{l}{4x-3y+12≥0}\\{4x+3y-12≤0}\\{y≥0}\end{array}\right.$,表示的平面區(qū)域為Ω,
(1)求平面區(qū)域為Ω內(nèi)整點的個數(shù);
(2)若圓C在區(qū)域為Ω內(nèi),且面積最大,求圓C的方程.

分析 (1)由約束條件作出可行域,由滿足不等式求得整解;
(2)直接求出三角形的內(nèi)切圓方程得答案.

解答 解:(1)由約束條件$\left\{\begin{array}{l}{4x-3y+12≥0}\\{4x+3y-12≤0}\\{y≥0}\end{array}\right.$作出可行域如圖,

可行域內(nèi)的整點坐標(biāo)為(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(1,2),(2,1),(0,2),(0,3),
(0,4),(-1,0),(-2,0),(-3,0),(-1,1),(-1,2),(-2,1)共17個;
(2)若圓C在區(qū)域為Ω內(nèi),且面積最大,則圓為三角形ABC的內(nèi)切圓,圓心坐標(biāo)為(0,$\frac{3}{2}$),半徑為$\frac{3}{2}$.
則圓C的方程為${x}^{2}+(y-\frac{3}{2})^{2}=\frac{9}{4}$.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了三角形內(nèi)切圓方程的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年湖南益陽市高二9月月考數(shù)學(xué)(理)試卷(解析版) 題型:填空題

滿足的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若定義在區(qū)間[-2015,2015]上的函數(shù)f(x)滿足:對于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2015,且x>0時,有f(x)<2015,f(x)的最大值、最小值分別為M,N,則M+N的值為( 。
A.2014B.2015C.4028D.4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若關(guān)于x的不等式組 $\left\{\begin{array}{l}{2x-3≥1}\\{x-2a≤3}\end{array}\right.$只有3個整數(shù)解,則a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)是定義在R上的函數(shù),對任意的x,y∈R都有f(x+y)=f(x)+f(y),且f(-1)=2
(1)求f(0),f(-2)的值;
(2)證明:函數(shù)f(x)在R上是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=3x+x3-3在區(qū)間(0,1)內(nèi)的零點個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是定義在R上的奇函數(shù),f(2)=0,當(dāng)x>0時,有$\frac{xf′(x)-f(x)}{{x}^{2}}$<0恒成立,則$\frac{f(x)}{x}>0$的解集為(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,A,B是單位圓上的相異兩定點(O為圓心),且∠AOB=θ(θ為銳角).點C為單位圓上的動點,線段AC交線段OB于點M.
(1)求$\overrightarrow{OA}•\overrightarrow{AB}$(結(jié)果用θ表示);
(2)若θ=60°
①求$\overrightarrow{CA}•\overrightarrow{CB}$的取值范圍;
②設(shè)$\overrightarrow{OM}=t\overrightarrow{OB}$(0<t<1),記$\frac{{{S_{△COM}}}}{{{S_{△BMA}}}}$=f(t),求函數(shù)f(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩個不相等的非零向量$\overrightarrow{a}$,$\overrightarrow$,兩組向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$,$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$,$\overrightarrow{{y}_{5}}$均由2個$\overrightarrow{a}$和3個$\overrightarrow$排列而成,記S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值,則下列命題中
(1)S有5個不同的值;(2)若$\overrightarrow{a}$⊥$\overrightarrow$則Smin與|$\overrightarrow{a}$|無關(guān);(3)若$\overrightarrow{a}$∥$\overrightarrow$則Smin與|$\overrightarrow$|無關(guān);(4)若|$\overrightarrow$|>4|$\overrightarrow{a}$|,則Smin>0;(5)若|$\overrightarrow$|=2|$\overrightarrow{a}$|,Smin=8|$\overrightarrow{a}$|2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$.正確的是(  )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)

查看答案和解析>>

同步練習(xí)冊答案