分析 由題意求得x=$\frac{7π}{12}$與($\frac{π}{3}$,0)為同一周期里面相鄰的對(duì)稱(chēng)軸與對(duì)稱(chēng)中心,由此求得f(x)的最小正周期.
解答 解:函數(shù)f(x)=sin(ωx+ϕ),A>0,ω>0,若f(x)在區(qū)間$[\frac{π}{6},\frac{π}{2}]$上單調(diào),
則$\frac{T}{2}$=$\frac{π}{ω}$≥$\frac{π}{2}$-$\frac{π}{6}$,∴0<ω≤3.
∵$f({\frac{π}{2}})=f({\frac{2π}{3}})=-f({\frac{π}{6}})$,∴x=$\frac{\frac{π}{2}+\frac{2π}{3}}{2}$=$\frac{7π}{12}$,為f(x)=sin(ωx+φ)的一條對(duì)稱(chēng)軸,
且($\frac{\frac{π}{6}+\frac{π}{2}}{2}$,0)即($\frac{π}{3}$,0)為f(x)=sin(ωx+φ)的一個(gè)對(duì)稱(chēng)中心,
∴$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,解得ω=2∈(0,3],∴T=$\frac{2π}{2}$=π,
故答案為:π.
點(diǎn)評(píng) 本題考查三角函數(shù)的周期性及其求法,確定x=$\frac{7π}{12}$與($\frac{π}{3}$,0)為同一周期里面相鄰的對(duì)稱(chēng)軸與對(duì)稱(chēng)中心是關(guān)鍵,也是難點(diǎn),屬于難題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{5π}{6}$ | D. | π |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com