欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.?dāng)?shù)列{(4n+3)•($\frac{1}{3}$)n}的前n項(xiàng)和為Sn=$\frac{9}{2}$-$\frac{4n+9}{2•{3}^{n}}$.

分析 運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.

解答 解:由前n項(xiàng)和為Sn=7•$\frac{1}{3}$+11•$\frac{1}{9}$+15•$\frac{1}{27}$+…+(4n+3)•($\frac{1}{3}$)n
$\frac{1}{3}$Sn=7•$\frac{1}{9}$+11•$\frac{1}{27}$+15•$\frac{1}{81}$+…+(4n+3)•($\frac{1}{3}$)n+1,
兩式相減可得,$\frac{2}{3}$Sn=$\frac{7}{3}$+4[$\frac{1}{9}$+$\frac{1}{27}$+…+($\frac{1}{3}$)n]-(4n+3)•($\frac{1}{3}$)n+1
=$\frac{7}{3}$+4•$\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-(4n+3)•($\frac{1}{3}$)n+1,
化簡(jiǎn)可得前n項(xiàng)和為Sn=$\frac{9}{2}$-$\frac{4n+9}{2•{3}^{n}}$.
故答案為:$\frac{9}{2}$-$\frac{4n+9}{2•{3}^{n}}$.

點(diǎn)評(píng) 本題考查數(shù)列的求和方法:錯(cuò)位相減法,同時(shí)考查等比數(shù)列的求和公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知兩條直線l1:ax-by+4=0和l2:(a-1)x+y+b=0,若l1⊥l2且l1過(guò)點(diǎn)(-3,-1),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})(ω>0)$圖象上相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$,則ω=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求證ln2<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…$\frac{1}{3n}$<ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,a1=-1,an+1=2Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an
(2)求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知集合A={x|x2-2x<0},B={0,1,2},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知$\overrightarrow{m}$=(cosα,sinα),$\overrightarrow{n}$=(2,1),a∈(-$\frac{π}{2}$,$\frac{π}{2}$),若$\overrightarrow{m}$•$\overrightarrow{n}$=1,則sin(2a+$\frac{3π}{2}$)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知冪函數(shù)f(x)滿足f($\frac{\sqrt{3}}{3}$)=3$\sqrt{3}$,則f(x)的表達(dá)式是( 。
A.f(x)=x-3B.f(x)=x3C.f(x)=3-xD.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若實(shí)數(shù)a,b,c,d滿足a2-lna=b,c-2=d,則$\sqrt{(a-c)^{2}+(b-d)^{2}}$的最小值為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案