【題目】設(shè)正項(xiàng)數(shù)列
的前n項(xiàng)和為
,已知![]()
(1)求證:數(shù)列
是等差數(shù)列,并求其通項(xiàng)公式
(2)設(shè)數(shù)列
的前n項(xiàng)和為
,且
,若
對(duì)任意
都成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)見(jiàn)證明;(2)![]()
【解析】
(1)首先求出
,利用
與
作差,化簡(jiǎn)即可得到
為常數(shù),進(jìn)而可證明數(shù)列
為等差數(shù)列,其首項(xiàng)為2,公差2,利用等差數(shù)列通項(xiàng)公式求出
;
(2)結(jié)合(1)可得
,利用裂項(xiàng)相消,即可求出數(shù)列
的前
項(xiàng)和為
,代入
,分離參數(shù)即可得到
,分別
為奇數(shù)和偶數(shù)是
的范圍即可.
(1)證明:∵
,且
,
當(dāng)
時(shí),
,解得
.
當(dāng)
時(shí),有
即
,即
.于是
,
即
.
∵
,∴
為常數(shù)
∴數(shù)列
是
為首項(xiàng),
為公差的等差數(shù)列,∴
.
(2)由(1)可得:
,
∴
,即
對(duì)任意
都成立![]()
,
①當(dāng)
為偶數(shù)時(shí),
恒成立,
令
,
,
在
上為增函數(shù),
![]()
②當(dāng)
為奇數(shù)時(shí),
恒成立,又
,
在
為增函數(shù),![]()
∴由①②可知:
綜上所述
的取值范圍為:![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為
(
是參數(shù)),直線
的極坐標(biāo)方程為
.
(1)求直線
的直角坐標(biāo)方程和曲線C的普通方程;
(2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解我校高2017級(jí)本部和大學(xué)城校區(qū)的學(xué)生是否愿意參加自主招生培訓(xùn)的情況,對(duì)全年級(jí)2000名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果如下表:
校區(qū) | 愿意參加 | 不愿意參加 |
重慶一中本部校區(qū) | 220 | 980 |
重慶一中大學(xué)城校區(qū) | 80 | 720 |
(1)若從愿意參加自主招生培訓(xùn)的同學(xué)中按分層抽樣的方法抽取15人,則大學(xué)城校區(qū)應(yīng)抽取幾人;
(2)現(xiàn)對(duì)愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對(duì)于這5道題,考生“如花姐”完全會(huì)答的有3題,不完全會(huì)的有2道,不完全會(huì)的每道題她得分
的概率滿足:
,假設(shè)解答各題之間沒(méi)有影響,
①對(duì)于一道不完全會(huì)的題,求“如花姐”得分的均值
;
②試求“如花姐”在本次摸底考試中總得分的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(5分)《九章算術(shù)》“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角梯形ABCD如圖(1)所示,其中
,
,過(guò)點(diǎn)B作
,垂足為M,得到面積為4的正方形ABMD,現(xiàn)沿BM進(jìn)行翻折,得到如圖(2)所示的四棱柱C-ABMD.
![]()
(1)求證:平面
平面CDM;
(2)若
,平面CBM與平面CAD所成銳二面角的余弦值為
,求CM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐
中,底面
是正方形,
平面
,
,
是
的中點(diǎn).
![]()
(1)求證:平面
平面
;
(2)求二面角
的大小;
(3)試判斷
所在直線與平面
是否平行,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4正方體
中,
為
的中點(diǎn),
,點(diǎn)
在正方體表面上移動(dòng),且滿足
,則點(diǎn)
和滿足條件的所有點(diǎn)
構(gòu)成的圖形的面積是______.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列
的前
項(xiàng)和為
,若
,
.
(1)證明:當(dāng)
時(shí),
;
(2)求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學(xué)成績(jī)的情況,該州教育局組織高三理科生進(jìn)行了摸底考試,現(xiàn)從參加考試的學(xué)生中隨機(jī)抽取了100名理科生,,將他們的化學(xué)成績(jī)(滿分為100分)分為![]()
![]()
![]()
![]()
![]()
6組,得到如圖所示的頻率分布直方圖.
![]()
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機(jī)抽取一名學(xué)生,該學(xué)生的化學(xué)成績(jī)不低于70分”,試估計(jì)事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績(jī)?cè)?/span>
內(nèi)的學(xué)生中抽取10名,再?gòu)倪@10名學(xué)生中隨機(jī)抽取4名,記這4名理科生成績(jī)?cè)?/span>
內(nèi)的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com