分析 由題分析可知將n表示成a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,實(shí)際是將十進(jìn)制的數(shù)轉(zhuǎn)化為二進(jìn)制的數(shù),易得65=1×26+0×25+0×24+0×23+0×22+0×21+1×20,通過I(n)的意義即得結(jié)論.
解答 解:根據(jù)題意,65=1×26+0×25+0×24+0×23+0×22+0×21+1×20,
∴I(65)=5,
故答案為:5.
點(diǎn)評(píng) 本題考查將十進(jìn)制的數(shù)轉(zhuǎn)化為二進(jìn)制的數(shù),透徹理解I(n)的定義是解決本題的關(guān)鍵,注意轉(zhuǎn)化思想與解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | |t1+t2| | B. | |t1-t2| | C. | $\sqrt{{a}^{2}+^{2}}$|t1-t2| | D. | $\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+^{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{7}$ | B. | $\frac{11}{14}$ | C. | -$\frac{5}{7}$ | D. | -$\frac{11}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2k+1 | B. | 2k-1 | C. | 2k | D. | 2k-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.7 | B. | 0.4 | C. | 0.8 | D. | 0.6 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com