【題目】有4位同學(xué)在同一天的上午、下午參加“身高與體重”“立定跳遠(yuǎn)”“肺活量”“握力”“臺階”5個項(xiàng)目的測試,每位同學(xué)上午、下午各測試1個項(xiàng)目,且不重復(fù).若上午不測“握力”項(xiàng)目,下午不測“臺階”項(xiàng)目,其余項(xiàng)目上午、下午都各測試1人,則不同的安排方式有多少種?
【答案】264種
【解析】
先分別用甲、乙、丙、丁代表四個同學(xué);用1,2,3,4,5代表這5個項(xiàng)目.根據(jù)題意,先確定上午的不同安排方式;再結(jié)合題意,不妨設(shè)上午的安排是:甲1,乙2,丙3,丁5;討論:丁下午測試4,丁下午不測試4兩種情況,分別求出不同的安排方法,進(jìn)而可求出結(jié)果.
分別用甲、乙、丙、丁代表四個同學(xué);用1,2,3,4,5代表這5個項(xiàng)目.
由條件,上午的安排是1,2,3,5的排列,共有
種;
由于每位同學(xué)上午、下午各測試1個項(xiàng)目,且不重復(fù),故下午的安排是1,2,3,4的排列,但不允許出現(xiàn)某同學(xué)上午、下午測試同一項(xiàng)目的情況.
不妨設(shè)上午的安排是:甲1,乙2,丙3,丁5;
(1)若丁下午測試4,則甲乙丙測試的項(xiàng)目可以為:2,3,1;3,1,2;共2種;
(2)當(dāng)丁下午不測試4,則丁有
種選擇,需從甲乙丙中選擇1人測試4,則有
種選擇;剩下兩人只有1種選擇;
故下午不同的安排方式有
種;
所以,共有
種不同的安排方式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意實(shí)數(shù)
給出下列命題:①“
”是“
”的充要條件;②“
是無理數(shù)”是“
是無理數(shù)”的充要條件;③“
”是“
”的充分條件;④“
”是“
”的必要條件.其中真命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對旗下的甲、乙兩個門店在1至9月份的營業(yè)額(單位:萬元)進(jìn)行統(tǒng)計并得到如圖折線圖.
![]()
下面關(guān)于兩個門店?duì)I業(yè)額的分析中,錯誤的是( )
A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢
D.乙門店在這9個月份中的營業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知sinC+cosC=1-sin
.
(1)求sinC的值;
(2)若a2+b2=4(a+b)-8,求邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由0,1,2,3,4,5這六個數(shù)字可以組成多少個沒有重復(fù)數(shù)字,且偶數(shù)數(shù)字與奇數(shù)數(shù)字相間隔的四位數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,向量
,
,且
.
(1)求點(diǎn)
的軌跡
的方程;
(2)過點(diǎn)
作直線
交曲線
于
,
兩點(diǎn)(
在
,
之間).設(shè)
,直線
的傾斜角
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩城市
和
相距
,現(xiàn)計劃在兩城市外以
為直徑的半圓
上選擇一點(diǎn)
建造垃圾處理場,其對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城
和城
的總影響度為城
和城
的影響度之和,記
點(diǎn)到城
的距離為
,建在
處的垃圾處理場對城
和城
的總影響度為
,統(tǒng)計調(diào)查表明:垃圾處理場對城
的影響度與所選地點(diǎn)到城
的距離的平方成反比,比例系數(shù)為4,對城
的影響度與所選地點(diǎn)到城
的距離的平方成反比,比例系數(shù)為
,當(dāng)垃圾處理場建在
的中點(diǎn)時,對城
和城
的總影響度為0.065;
![]()
(1)將
表示成
的函數(shù);
(2)判斷
上是否存在一點(diǎn),使建在此處的垃圾處理場對城
和城
的總影響度最小?若存在,求出該點(diǎn)到城
的距離;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:![]()
過點(diǎn)
,且離心率為
.
(1)求橢圓
的方程;
(2)若斜率為![]()
的直線
與橢圓
交于不同的兩點(diǎn)
,
,且線段
的垂直平分線過點(diǎn)
,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com