【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點,
. ![]()
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.
【答案】解:(Ⅰ)當
,即M為AF中點時MN∥平面ABC. 事實上,取CD中點P,連接PM,PN,
∵AM=MF,CP=PD,∴MP∥AC,
∵AC平面ABC,MP平面ABC,∴MP∥平面ABC.
由CP∥PD,CN∥NE,得NP∥DE,
又DE∥BC,∴NP∥BC,
∵BC平面ABC,NP平面ABC,∴NP∥平面ABC.
∴平面MNP∥平面ABC,則MN∥平面ABC;
(Ⅱ)取BC中點O,連OA,OE,
∵AB=AC,OB=OC,∴AO⊥BC,
∵平面ABC⊥平面BCDE,且AO平面ABC,∴AO⊥平面BCDE,
∵OC=
,BC∥ED,∴OE∥CD,
又CD⊥BC,∴OE⊥BC.
分別以O(shè)E,OC,OA所在直線為x軸,y軸,z軸,建立空間直角坐標系.
則A(0,0,
),C(0,1,0),E(1,0,0),
,
∴F(1,
,
),M(
,
,
),N(
).
設(shè)
為平面BMN的法向量,則
,取z=1,得
.
cos<
>=
.
∴直線AN與平面MNB所成角的正弦值為
.![]()
【解析】 (Ⅰ)取CD中點P,連接PM,PN,可得MP∥AC,則MP∥平面ABC.再由已知證明NP∥平面ABC.得到平面MNP∥平面ABC,則MN∥平面ABC;(Ⅱ)取BC中點O,連OA,OE,可證AO⊥BC,OE⊥BC.分別以O(shè)E,OC,OA所在直線為x軸,y軸,z軸,建立空間直角坐標系.求出所用點的坐標,得到平面BMN的法向量,求出<
>的余弦值,即可得到直線AN與平面MNB所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)
(x∈R)時,分別給出下面幾個結(jié)論:
①函數(shù)f(x)是奇函數(shù);②函數(shù)f(x)的值域為(-1,1);③函數(shù)f(x)在R上是增函數(shù);其中正確結(jié)論的序號是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線![]()
(1)求證:直線
過定點;
(2)求直線
被圓
所截得的弦長最短時
的值;
(3)已知點
,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有
為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,若曲線
上存在(x0 , y0),使得f(f(y0))=y0成立,則實數(shù)m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的一個焦點為
,離心率為
.點
為圓
上任意一點,
為坐標原點.
(1)求橢圓
的標準方程;
(2)設(shè)直線
經(jīng)過點
且與橢圓
相切,
與圓
相交于另一點
,點
關(guān)于原點
的對稱點為
,證明:直線
與橢圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點為
,拋物線
的焦點為
.
(1)若過點
的直線
與拋物線
有且只有一個交點,求直線
的方程;
(2)若直線
與拋物線
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.
![]()
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.
(Ⅰ)求證:
平面
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)設(shè)點
是線段
上一個動點,試確定點
的位置,使得
平面
,并證明你的結(jié)論.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com